Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngRibi Nkok NgokMysterious PersonVõ Đông Anh TuấnPhương AnTrần Việt Linh
![](https://rs.olm.vn/images/avt/0.png?1311)
a: A=(-7/4; -1/2]
\(B=\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\)
\(C=\left(\dfrac{2}{3};+\infty\right)\)
b: \(\left(A\cap B\right)\cap C=\varnothing\)
\(\left(A\cup C\right)\cap\left(B\A\right)\)
\(=(-\dfrac{7}{4};-\dfrac{1}{2}]\cup\left(\dfrac{2}{3};+\infty\right)\cap\left[\left(-\dfrac{9}{2};-4\right)\cup\left(4;\dfrac{9}{2}\right)\right]\)
\(=\left(4;\dfrac{9}{2}\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A\cap B=[0;7)\)
\(\Rightarrow A\cap B\cap C=\left(6;7\right)\)
\(\Rightarrow C_R\left(A\cap B\cap C\right)=(-\infty;6]\cup[7;+\infty)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=(-2;2)
B=[-3;2)
A giao B=(-2;2)
A\B=\(\varnothing\)
B\A=[-3;-2]
\(C_R\left(A\cap B\right)=R\backslash\left(-2;2\right)=(-\infty;-2]\cup[2;+\infty)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3:
a: \(\left(-\infty;\dfrac{1}{3}\right)\cap\left(\dfrac{1}{4};+\infty\right)=\left(\dfrac{1}{4};\dfrac{1}{3}\right)\)
b: \(\left(-\dfrac{11}{2};7\right)\cup\left(-2;\dfrac{27}{2}\right)=\left(-\dfrac{11}{2};\dfrac{27}{2}\right)\)
c: \(\left(0;12\right)\text{\[}5;+\infty)=\left(0;5\right)\)
d: \(R\[ -1;1)=\left(-\infty;-1\right)\cup[1;+\infty)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=[-4;4]
B=[-3;2)
\(A\cap B\)=[-3;2)
A\B=[-4;-3)
B\A=\(\varnothing\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{\left|x\right|-1}{\left|x\right|}>0\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\\left|x\right|-1>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\)
\(\Rightarrow C=\left(-\infty;-1\right)\cup\left(1;+\infty\right)\)
\(\Rightarrow B\cap C=(1;2019]\)
\(\Rightarrow A\cap B\cap C=\varnothing\Leftrightarrow\left[{}\begin{matrix}a>2019\\a+2\le1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}a>2019\\a\le-1\end{matrix}\right.\)
Để B giao C có độ dài là 9 thì |b-5|=9
=>b-5=9 hoặc b-5=-9
=>b=14(loại) hoặc b=-4(nhận)
A giao B=[b;a]
=>a-b=7
=>a+4=7
=>a=3