\(\frac{x^2+x+1}{x^2+1}\). Tìm min A, max A

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 7 2020

Lời giải:

ĐK: $x\in\mathbb{R}$

$A=\frac{x^2+x+1}{x^2+1}=1+\frac{x}{x^2+1}$

$2A=2+\frac{2x}{x^2+1}=1+\frac{(x+1)^2}{x^2+1}$

Vì $(x+1)^2\geq 0; x^2+1>0$ với mọi $x$ nên $\frac{(x+1)^2}{x^2+1}\geq 0$

$\Rightarrow 2A\geq 1$

$\Rightarrow A\geq \frac{1}{2}$. Vậy $A_{\min}=\frac{1}{2}$ khi $x=-1$

Mặt khác:

$2A=2+\frac{2x}{x^2+1}=3-(1-\frac{2x}{x^2+1})=3-\frac{(x-1)^2}{x^2+1}$

Lập luận tương tự ở trên ta cũng có $\frac{(x-1)^2}{x^2+1}\geq 0$

$\Rightarrow 2A\leq 3\Rightarrow A\leq \frac{3}{2}$

Vậy $A_{\max}=\frac{3}{2}$ khi $x=1$

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

31 tháng 8 2018

Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Đặt a+b=x;b+c=y;c+a=z

\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)

Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)

31 tháng 8 2018

Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)

Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)

6 tháng 8 2017

NHỚ K MK NHA!!!

6 tháng 8 2017

a)Áp dụng BĐT (x+y)^2>=4xy>>>(3a+5b)^2>=4.3a.5b>>>144>=60ab>>>ab<=12/5

Dấu=xảy ra khi 3a=5b hay khi a=7,5;b=4.5(không nên dùng Cô-si vì không chắc chắn là số dương).

b)Áp dụng BĐT Cô-si>>>(y+10)^2>=40y(do ở đây y>0 nên có thể dùng Cô-si)>>>A<=y/40y=1/40

Dấu= xảy ra khi y=10.

c)A=(x^2+x+1)/x^2+2x+1=1/2(2x^2+2x+1)/x^2+2x+1>>>A/2=(x^2+2x+1)/(x^2+2x+1)+x^2/(x^2+2x+1))>=1+0=1

Dấu= xảy ra khi x=0

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

23 tháng 7 2021

Đk: \(x\ge0\)

a) Ta có: x = 16 => A = \(\frac{\sqrt{16}+5}{\sqrt{16}+2}=\frac{4+5}{4+2}=\frac{9}{6}=\frac{3}{2}\)

\(x=3-2\sqrt{2}=\left(\sqrt{2}-1\right)^2\)=> \(\sqrt{x}=\sqrt{\left(\sqrt{2}-1\right)^2}=\sqrt{2}-1\)

=> A = \(\frac{\sqrt{2}-1+5}{\sqrt{2}-1+2}=\frac{\sqrt{2}+4}{\sqrt{2}+2}=\frac{\sqrt{2}\left(2\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}{\sqrt{2}\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\frac{4-\sqrt{2}-1}{2-1}=3-\sqrt{2}\)

b) A = 2 <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}=2\) <=> \(\sqrt{x}+5=2\sqrt{x}+4\) <=> \(\sqrt{x}=1\) <=> x = 1 (tm)

\(A=\sqrt{x}+1\) <=> \(\frac{\sqrt{x}+5}{\sqrt{x}+2}=\sqrt{x}+1\) <=> \(\sqrt{x}+5=\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\)

<=> \(\sqrt{x}+5=x+3\sqrt{x}+2\) <=> \(x+2\sqrt{x}-3=0\)<=> \(x+3\sqrt{x}-\sqrt{x}-3=0\)

<=> \(\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\) <=> \(\sqrt{x}-1=0\)(vì \(\sqrt{x}+3>0\))

<=> \(x=1\)(tm)

c) Ta có: \(A=\frac{\sqrt{x}+5}{\sqrt{x}+2}=\frac{\sqrt{x}+2+3}{\sqrt{x}+2}=1+\frac{3}{\sqrt{x}+2}\)

Do \(\sqrt{x}+2\ge\) => \(\frac{3}{\sqrt{x}+2}\le\frac{3}{2}\) => \(1+\frac{3}{\sqrt{x}+2}\le1+\frac{3}{2}=\frac{5}{2}\) => A \(\le\)5/2

Dấu "=" xảy ra<=> x = 0

Vậy MaxA = 5/2 <=> x = 0