Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Làm hộ tui đi à,đây là Sol của thầy Sỹ,đọc là 1 chuyện nhưng hiểu mới là vấn đề.
BĐT đẹp vãi ra mà ối sồi ôi lời giải khủng VCL.Hóng cách nhẹ hơn...
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2\sqrt{a^2}=2\left|a\right|=2a\) (vì \(a\ge0\))
b) \(\sqrt{3a^2}=\left|a\right|\sqrt{3}=-a\sqrt{3}\) (vì \(a< 0\))
c) \(5\sqrt{a^4}=5\sqrt{\left(a^2\right)^2}=5\left|a^2\right|=5a^2\)
d) \(\dfrac{1}{3}\sqrt{c^6}=\dfrac{1}{3}\sqrt{\left(c^3\right)^2}=\dfrac{1}{3}\left|c^3\right|=\dfrac{1}{3}\left(-c^3\right)=-\dfrac{1}{3}c^3\) (vì \(c< 0\Rightarrow c^3< 0\))
\(a)2\sqrt{a^2}=2.\left|a\right|=2a\) ( vì \(a\ge0\) )
\(b)\sqrt{3a^2}=\left|a\right|\sqrt{3}=-a\sqrt{3}\) ( vì \(a< 0\) )
\(c)5\sqrt{a^4}=5\sqrt{\left(a^2\right)^2}=5\left|a^2\right|=5a^2\)
\(d)\dfrac{1}{3}\sqrt{c^6}=\dfrac{1}{3}\sqrt{\left(c^3\right)^2}=\dfrac{1}{3}\left|c^3\right|=\dfrac{1}{3}\left(-c^3\right)\) ( vì \(c< 0\Rightarrow c^3< 0\) )
Chúc bn học tốt!
![](https://rs.olm.vn/images/avt/0.png?1311)
1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)
2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.
\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.
$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.
$C$ hiển nhiên đúng, theo định nghĩa.
Do đó áp án đúng là C.
3)
a) \(-\sqrt{x}=(-7)^2=49\)
\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)
Do đó pt vô nghiệm.
b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)
Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm
Vậy pt vô nghiệm.
d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)
e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)
g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)
\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)
\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)
h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)
f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)
\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Để \(x^4+ax^3+b\vdots x^2-1\) thì \(x^4+ax^3+b\) phải được viết dưới dạng :
\(x^4+ax^3+b=(x^2-1)Q(x)\) với $Q(x)$ là đa thức thương.
Thay $x=1$ và $x=-1$ lần lượt ta có:
\(\left\{\begin{matrix} 1+a+b=(1^2-1)Q(1)=0\\ 1-a+b=[(-1)^2-1]Q(-1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a+b=-1\\ -a+b=-1\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=0\\ b=-1\end{matrix}\right.\)
PP 2 xin đợi bạn khác giải quyết :)
Bài 3:
Ta có: \(\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{9-4\sqrt{5}}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{5+4-4\sqrt{5}}}\)
\(=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9\sqrt{(2-\sqrt{5})^2}}=\frac{\sqrt{12}-\sqrt{27}-\sqrt{48}}{1-\sqrt{5}+9(\sqrt{5}-2)}=\frac{\sqrt{3}(2-3-4)}{-17+8\sqrt{5}}=\frac{-5\sqrt{3}}{-17+8\sqrt{5}}\)
\(=\frac{5\sqrt{3}}{17-8\sqrt{5}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) Ta có: \(6=\sqrt{36}< \sqrt{37}\)
Vậy \(6< \sqrt{37}\)
b) Ta có: \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)
Vậy \(2\sqrt{3}< 3\sqrt{2}\)
p/s: Bạn có thể lấy số gần mà tính cũng được do mình nghĩ lớp 7 chưa học mà học rồi thì làm cách trên cho nhanh nhé.
c) Ta có: \(\sqrt{63}\approx7,4;\sqrt{35}\approx6\)
Mà \(7,4+6=13,4< 14\Rightarrow\sqrt{63}+\sqrt{35}< 14\)
Câu 2: a) \(\sqrt{x-1}=\frac{1}{2}\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\frac{1}{2}\right)^2\Rightarrow x-1=\frac{1}{4}\Rightarrow x=\frac{5}{4}\)
b) \(\sqrt{\left(x-1\right)^2}=9=\sqrt{81}\Rightarrow\left(x-1\right)^2=81\Rightarrow x-1\in\left\{\pm9\right\}\Rightarrow x\in\left\{10;-8\right\}\)
c) \(2\sqrt{3x-2}=3\Rightarrow\sqrt{3x-2}=\frac{3}{2}=\sqrt{\frac{9}{4}}\Rightarrow3x-2=\frac{9}{4}\Rightarrow x=\frac{17}{12}\)
\(3x^2+2xy+3y^2=\left(x+y\right)^2+2\left(x^2+y^2\right)\ge\left(x+y\right)^2+\left(x+y\right)^2=2\left(x+y\right)^2\)
\(\Rightarrow A\ge\sqrt{2}\left(a+b\right)+\sqrt{2}\left(b+c\right)+\sqrt{2}\left(c+a\right)\)
\(A\ge2\sqrt{2}\left(a+b+c\right)\ge\frac{2\sqrt{2}}{3}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=6\sqrt{2}\)
\(A_{min}=6\sqrt{2}\) khi \(a=b=c=1\)