\(a^2+b^2+c^2+d^2+e^2\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 12 2018

Lời giải:

\(a,b,c,d,e\in [-1;1]\Rightarrow \left\{\begin{matrix} a^2\leq |a|\\ b^2\leq |b|\\ c^2\leq |c|\\ d^2\leq |d|\\ e^2\leq |e|\\ |d|; |e|\leq 1\end{matrix}\right.\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2\leq |a|+|b|+|c|+|d|+|e|(*)\)

Có $5$ số nên theo nguyên lý Dirichlet thì tồn tại ít nhất \(\left[\frac{5}{2}\right]+1=3\) số cùng dấu. Giả sử đó là $a,b,c$

Khi đó \(ab\geq 0; c(a+b)\geq 0\)

\(\Rightarrow |a|+|b|+|c|=|a+b|+|c|=|a+b+c|\)

\(\Rightarrow |a|+|b|+|c|+|d|+|e|=|a+b+c|+|d|+|e|\)

\(=|-(d+e)|+|d|+|e|=|d+e|+|d|+|e|\)

\(\leq |d|+|e|+|d|+|e|\leq 1+1+1+1=4(**)\)

Từ \((*);(**)\Rightarrow a^2+b^2+c^2+d^2+e^2\leq 4\) hay max của biểu thức bằng $4$

Dấu "=" xảy ra khi \((a,b,c,d,e)=(1,1,0,-1,-1)\) và hoán vị.

27 tháng 12 2018

Nguyễn Việt Lâm Uyen Vuuyen Akai Haruma

NV
8 tháng 3 2022

Với mọi a;b;c;d;e ta có:

\(\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\) (đpcm)

Dấu "=" xảy ra khi \(\dfrac{a}{2}=b=c=d=e\)

BĐT

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4a\left(b+c+d+e\right)\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2\ge4ab+4ac+4ad+4ae\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2+4e^2-\left(4ab+4ac+4ad+4ae\right)\ge0\)

\(\Leftrightarrow a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2-4ae+4e^2\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+\left(a-2e\right)^2\ge0\), luôn đúng với \(\forall a,b,c,d,e\in R\)

Dấu "=" xảy ra khi và chỉ khi \(a=2b=2c=2d=2e\)

8 tháng 7 2018

Nhân cả 2 vế với 4, ta có:

8a2+4b2+4c2+4d2+4e2=4a(b+c+d+e)

<=> 8a2+4b2+4c2+4d2+4e- 4a(b+c+d+e) = 0

<=> 8a2+4b2+4c2+4d2+4e- 4ab-4ac-4ad-4ae=0

<=>(a2-4ab+4b2) + (a2-4ac+4c2) + (a2-4ad4d2) + (a2-4ae+ 4e2) +4a2=0

<=> (a-2b)+ (a-2c)2 + (a-2d)+ (a-2e)+ (2a)2 = 0

Vì (a-2b)2, (a-2c)2, (a-2d)2, (a-2e), (2a)2 luôn lớn hơn hoặc bằng không

=> (a-2b)+ (a-2c)2 + (a-2d)+ (a-2e)+ (2a)2 >= 0

mà (a-2b)+ (a-2c)2 + (a-2d)+ (a-2e)+ (2a)2 = 0

nên 

(2a)= 0 <=> a=0

 (a-2b)= 0 <=> (0-2b)2=0 <=> 2b=0 <=> b=0

Chứng minh tương tự ta được a=b=c=d=e=0

Vậy a=b=c=d=e=0

8 tháng 7 2018

Áp dụng BĐT \(4\left(a^2+b^2+c^2+d^2+e^2\right)\ge4ab+4ac+4ad+4ae\)

\(\Rightarrow\left(a^2-4ab+4b^2\right)+\left(a^2-4ac+4c^2\right)+\)\(\left(a^2-4ad+4d^2\right)+\left(a^2-4ae+4e^2\right)\ge0\)

\(\Rightarrow\left(a-2b\right)^2+\left(a-2c^2\right)+\left(a-2d^2\right)+\left(a-2e\right)^2\ge0\)( Luôn đúng với mọi trường hợp )

Dấu "=" xảy ra \(\Leftrightarrow a=2b=2c=2d=2e\)

P/s không hiểu thì: \(2xy\le x^2+y^2\forall x=2a;y=b+c+d+e\)

Có thể dùng BĐT  Bunhiaxicop cho 4 số

8 tháng 9 2018

Đặt;\(\frac{a}{d}=x;\frac{b}{e}=y;\frac{c}{f}=z\left(x,y,z>0\right)\)\(\Rightarrow\)Ta cần tính \(x^2+y^2+z^2\)

Suy ra ta có hệ phương trình;\(\hept{\begin{cases}x+y+z=1\left(1\right)\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\left(2\right)\end{cases}}\)

Từ (2) suy ra xy+yz+xz=0

Lại có \(1=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+xz\right)\)

Suy ra \(x^2+y^2+z^2=1\)

2 tháng 6 2017

câu 1 tớ bị nhầm đề là c/a :)

31 tháng 1 2020

Bất đẳng thức đã cho tương đương với:
\[{a^2} + {b^2} + {c^2} + {d^2} + {e^2} - a\left( {b + c + d + e} \right) \ge 0\]
\[ \Leftrightarrow {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2} \ge 0\]
Xét tam thức bậc hai: $f\left( a \right) = {a^2} - a\left( {b + c + d + e} \right) + {b^2} + {c^2} + {d^2} + {e^2}$
Ta có: $\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)$
Theo bất đẳng thức BCS, ta có: \[{\left( {b + c + d + e} \right)^2} \le \left( {1 + 1 + 1 + 1} \right)\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) = 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right)\]
Suy ra: \[\Delta = {\left( {b + c + d + e} \right)^2} - 4\left( {{b^2} + {c^2} + {d^2} + {e^2}} \right) \le 0 \Rightarrow f\left( a \right) \ge 0,\,\,\forall a \in \mathbb{R} \]
Từ đó ta có đpcm.

31 tháng 1 2020
https://i.imgur.com/8dtxBfV.jpg
15 tháng 9 2018

WTFFFFFFFFFFFFFFF !!!!!!!
Tên mình màu đỏ kìa ?!?!?!?!!?!?!

Có ai biết tại sao không? Mình cũng ko biết nữa!!

GIÚP MÌNH BÀI VỚI !!!!!!

17 tháng 10 2018

chịu thua

8 tháng 10 2017

a) \(a^2+b^2+c^2\ge ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm.

Đẳng thức khi \(a=b=c\)

b) \(a^2+b^2+1\ge ab+a+b\)

\(\Leftrightarrow2a^2+2b^2+2\ge2ab+2a+2b\)

\(\Leftrightarrow a^2-2ab+b^2+b^2-2b+1+a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-1\right)^2+\left(a-1\right)^2\ge0\)

(Luôn đúng)

Vậy ta có đpcm

Đẳng thức khi \(a=b=1\)

Các bài tiếp theo tương tự :v

g) \(a^2\left(1+b^2\right)+b^2\left(1+c^2\right)+c^2\left(1+a^2\right)=a^2+a^2b^2+b^2+b^2c^2+c^2+c^2a^2\ge6\sqrt[6]{a^2.a^2b^2.b^2.b^2c^2.c^2.c^2a^2}=6abc\)

i) \(\dfrac{1}{a}+\dfrac{1}{b}\ge2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=\dfrac{2}{\sqrt{ab}}\)

Tương tự: \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}};\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)

Cộng vế theo vế rồi rút gọn cho 2, ta được đpcm

j) Tương tự bài i), áp dụng Cauchy, cộng vế theo vế rồi rút gọn được đpcm

28 tháng 7 2020

làm xong ấn hủy :(( chán 

\(bđt\Leftrightarrow2a^2+2b^2+2c^2+2d^2+2e^2-2ab-2ac-2ad-2ae\ge0\)

\(\Leftrightarrow a^2-2a\left(d+e\right)+\left(d+e\right)^2+b^2-2bc+c^2+a^2-2a\left(b+c\right)+\left(b+c\right)^2+d^2-2de+e^2\ge0\)

\(\Leftrightarrow\left(a-d-e\right)^2+\left(b-c\right)^2+\left(a-b-c\right)^2+\left(d-e\right)^2\ge0\)*đúng*

Vậy ta có điều phải chứng minh 

28 tháng 7 2020

cách khác câu a)

ta xét P=a2-a(b+c+d+e)+b2+c2+d2+e2 là một tam thức bậc 2 theo biến a ta có \(\Delta=\left(b+d+c+e\right)^2-4\left(b^2+d^2+c^2+e^2\right)\)

theo bđt cauchy-schwarz ta có \(\left(1+1+1+1\right)\left(b^2+c^2+d^2+e^2\right)\ge\left(b+d+c+e\right)^2\)

do đó \(\Delta\le0\), theo định lí về dấu của tam thức bậc hai ta được

a2-a(b+c+d+e) +b2+c2+d2+e2>=0

bài toán được chứng minh