Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

bài này sai đề nha, phải (a+b+c+d)^3 mới đúng
abc+bcd+cda+dab
=ab(c+d)+cd(a+b)≤1/4(a+b)2(c+d)+1/4(c+d)2(a+b)=1/4(a+b)(c+d)(a+b+c+d)≤1/16(a+b+c+d)3
=>16(abc+bcd+cda+dad)<=(a+b+c+d)3

tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha


Ta có:
\(\sqrt{2012}=abc+bcd+cda+dab-a-b-c-d=\left(bc-1\right)\left(a+d\right)+\left(ad-1\right)\left(b+c\right)\)
\(\Leftrightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(ad-1\right)\left(b+c\right)\right]^2\)
\(\le\left[\left(bc-1\right)^2+\left(b+c\right)^2\right]\left[\left(ad-1\right)^2+\left(a+d\right)^2\right]\)
\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)
\(GT\Leftrightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(a+c\right)\left(ad-1\right)\right]^2\le\left[\left(bc-1\right)^2+\left(b+c^2\right)\right]\)
\(\left[\left(ad-1\right)^2+\left(a+d\right)^2\right]=\left(b^2+1\right)\left(c^2+1\right)\left(a^2+1\right)\left(d^2+1\right)\)
P/s: Mình không chắc đâu ! Tham khảo nha!

\(\sqrt{2012}=\left(abc+bcd-a-d\right)+\left(cda+dab-c-b\right)\)
\(=\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\)
\(\Rightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\right]^2\)
\(\le\left[\left(bc-1\right)^2+\left(c+b\right)^2\right]\left[\left(a+d\right)^2+\left(ad-1\right)^2\right]\)
\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)

https://diendantoanhoc.net/topic/76281-bdt-thi-h%E1%BB%8Dc-sinh-gi%E1%BB%8Fi-t%E1%BB%89nh-l%E1%BB%9Bp-9-nam-2011-2012/

ta có
\(abc+bcd+cda+dab=1\Leftrightarrow abc+d\left(\right.a+b+c\left.\right)=1\)
biểu thức
\(P=4\left(\right.a^3+b^3+c^3\left.\right)+9d^3\)
ta có
\(a^3+b^3+c^3\geq3abc\Rightarrow4\left(\right.a^3+b^3+c^3\left.\right)\geq12abc\)
vì
\(P\geq12abc+9d^3\left(\right.1\left.\right)\)
từ trên ta có
\(abc+d\left(\right.a+b+c\left.\right)=1\)
Nếu \(d\) lớn thì \(a b c\) nhỏ ⇒ vế phải (1) lớn
Nếu \(d\) nhỏ thì \(a b c \approx 1\) ⇒ khi đó
\(P\approx12\cdot1+0=12\)
Vậy
giá trị nhỏ nhất của \(P\) là
\(minP=12\)
đạt được khi \(a = b = c = 1 , d \rightarrow 0^{+}\).
do đó
\(12\)
Về cơ bản thì bài này ko giải được
Theo kĩ thuật cân bằng hệ số AM-GM:
Gọi x là 1 hằng số dương nào đó, ta có:
\(a^3+b^3+x^3.d^3\ge3x.abd\)
Tương tự thì:
\(a^3+c^3+x^3.d^3\ge3x.acd\)
\(b^3+c^3+x^3.d^3\ge3x.bcd\)
Cộng vế:
\(2\left(a^3+b^3+c^3\right)+3x^3.d^3\ge3x.\left(bcd+cda+abd\right)\)
Đồng thời: \(x.\left(a^3+b^3+c^3\right)\ge3x.abc\)
Cộng vế:
\(\left(x+2\right)\left(a^3+b^3+c^3\right)+3x^3.d^3\ge3x\)
So sánh với biểu thức P thì ta cần tìm x sao cho:
\(\frac{x+2}{4}=\frac{3x^3}{9}\Rightarrow4x^3-3x-6=0\)
Đây là 1 pt ko thể giải được (ra 1 kết quả x đủ đẹp)
Trả lời nhanh lên, lâu quá đó!