Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

sao ko chứng minh luôn tính chất đường trung tuyến trong tam giác vuong luôn đi sao phải dài dòng thế

A B C D F K M E
Sửa đề: Chứng minh góc EFM = 900 ?
Có DF = CK => DF + FK = CK + FK => DK = CF. Xét \(\Delta\)EKF có ^EKF = 900
=> ME2 = KE2 + KM2 (ĐL Pytagoras). Tương tự: KE2 = DE2 + DK2 ; KM2 = CK2 + CM2
Do đó ME2 = DE2 + DK2 + CK2 + CM2. Thay CK = DF, DK = CF ta được:
ME2 = (DE2 + DF2) + (CF2 + CM2) = FE2 + FM2 (ĐL Pytagoras)
Áp dụng ĐL Pytagoras đảo vào \(\Delta\)EMF suy ra \(\Delta\)EMF vuông tại F => ^EFM = 900.
Cho mình sửa dòng thứ 2: "Xét \(\Delta\)EKM có ^EKM = 900 "

A B C D E H M N K 1 1 1 2
a)Ta có : \(\widehat{A_1}+\widehat{M_1}=90^o;\widehat{M_1}+\widehat{BMC}=90^o\)\(\Rightarrow\widehat{A_1}=\widehat{BMC}\)
Xét \(\Delta ADM\)và \(\Delta BMC\)có : \(\widehat{A_1}=\widehat{BMC}\); \(\widehat{ADM}=\widehat{BCM}\)
\(\Rightarrow\Delta DAM\approx\Delta CMB\left(g.g\right)\)\(\Rightarrow\frac{AD}{DM}=\frac{CM}{BC}\)hay CM = \(\frac{5}{2}.5=12,5\)
b) \(\Delta AMB\)có EK là tia phân giác nên \(\frac{EA}{EB}=\frac{MA}{MB}\)( 1 )
Mặt khác : \(\widehat{B_1}+\widehat{EKB}=90^o;\widehat{B_1}+\widehat{A_2}=90^o\)nên \(\widehat{A_2}=\widehat{EKB}\)
\(\Delta BEK\approx\Delta BMA\left(g.g\right)\)\(\Rightarrow\frac{EK}{EB}=\frac{MA}{MB}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra EA = EK
c) Ta có : \(\widehat{BMH}=90^o\)nên \(BM\perp AH\)
Xét \(\Delta AHB\)có \(BM\perp AH\); \(HE\perp AB\)nên K là trực tâm \(\Rightarrow AN\perp BH\)
\(\Rightarrow\widehat{ANH}=90^o\)
xét \(\Delta AHN\)và \(\Delta BMH\)có : \(\widehat{ANH}=\widehat{BMH}=90^o;\widehat{MHN}\left(chung\right)\)
\(\Rightarrow\)\(\Delta AHN\approx\Delta BHM\left(g.g\right)\)\(\Rightarrow\)\(\frac{MH}{BH}=\frac{HN}{AH}\)hay \(\frac{MH}{HN}=\frac{BH}{AH}\)
Xét \(\Delta MHN\)và \(\Delta AHB\)có : \(\widehat{MHN}\left(chung\right);\frac{MH}{HN}=\frac{BH}{AH}\)
\(\Rightarrow\)\(\Delta HMN\approx\Delta HBA\left(g.g\right)\) \(\Rightarrow\)\(\widehat{HMN}=\widehat{HBA}\)
Mà EA = EK nên \(\widehat{A_2}=45^o\) \(\Rightarrow\widehat{ABH}=90^o-\widehat{A_2}=45^o\)hay \(\widehat{HMN}=45^o\)
Ta có : \(\widehat{EMN}=180^o-\widehat{AME}-\widehat{HMN}=180^o-45^o-45^o=90^o\)
\(\Rightarrow EM\perp MN\)
Mặt khác : ME là tia phân giác \(\widehat{AMB}\) nên MN là tia phân giác \(\widehat{BMH}\)