
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Từ gt =>
\(\frac{1}{1+a}\ge\left(1-\frac{1}{1+b}\right)+\left(1-\frac{1}{1+c}\right)+\left(1-\frac{1}{1+d}\right)\)= \(\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\)\(\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\)
( Theo Cô-si )
Vậy :
\(\left\{{}\begin{matrix}\frac{1}{1+a}\ge3\sqrt[3]{\frac{bcd}{\left(1+b\right)\left(1+c\right)\left(1+d\right)}}\ge0\\\frac{1}{1+b}\ge3\sqrt[3]{\frac{cda}{\left(1+c\right)\left(1+d\right)\left(1+a\right)}}\ge0\\\frac{1}{1+c}\ge3\sqrt[3]{\frac{dca}{\left(1+d\right)\left(1+c\right)\left(1+a\right)}}\ge0\\\frac{1}{1+d}\ge3\sqrt[3]{\frac{abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}}\ge0\end{matrix}\right.\)
=> \(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\ge81\frac{abcd}{\left(1+a\right)\left(1+b\right)\left(1+c\right)\left(1+d\right)}\Rightarrow abcd\le\frac{1}{81}\)

Từ \(abc=1\) VÀ \(a,b,c>0\) áp dụng BĐT AM-GM ta có:
\(a+b+c\ge3;a^2+b^2+c^2\ge3\)
Ta có: \(VT=\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
\(=\frac{a^4}{\left(1+ab\right)\left(1+ac\right)}+\frac{b^4}{\left(1+bc\right)\left(1+ca\right)}+\frac{c^4}{\left(1+ca\right)\left(1+cb\right)}\)
\(=\frac{a^4}{a+ab+ac+1}+\frac{b^4}{b+bc+ba+1}+\frac{c^4}{c+ca+cb+1}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c+2\left(ab+bc+ca\right)+3}\)
\(\Rightarrow VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(a+b+c\right)+2\left(ab+bc+ca\right)}\left(a+b+c\ge3\right)\)
\(\Rightarrow VT\ge\frac{\left(a^2+b^2+c^2\right)^2}{3\left(a^2+b^2+c^2+1\right)}\)( dễ c/m rằng \(3\left(a^2+b^2+c^2+1\right)\ge2\left(a+b+c+ab+bc+ca\right)\))
Vậy ta cần c/m \(\frac{\left(a^2+b^2+c^2\right)^2}{3\left(a^2+b^2+c^2+1\right)}\ge\frac{3}{4}\left(1\right)\)
Đặt \(a^2+b^2+c^2=t\ge3\). Ta có:
\(\left(1\right)\Leftrightarrow\left(t-3\right)\left(4t+3\right)\ge0\forall t\ge3\)
Đẳng thức xảy ra khi a=b=c=1
Hay sử dụng Am-GM ta có:
\(\frac{a^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}a\)
Thiết lập 2 BĐT tương tự r` cộng theo vế

Áp dụng bất đẳng thức Cauchy- Schwartz ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}\ge\frac{\left(1+1+1+1+1\right)^2}{a+b+c+d+e}=\frac{25}{a+b+c+d+e}\)
Dấu "=" xảy ra khi a = b = c = d = e

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}=9\)
Dấu "=" xảy ra <=> a= b = c = 1/3
(bđt Svacxo lên mạng tra nha)
Áp dụng BĐT Cô - Si với ba số dương a , b , c , ta có
\(a+b+c\ge3\sqrt[3]{abc}\)
Áp dụng BĐT Cô - Si với ba số dương \(\frac{1}{a},\frac{1}{b},\frac{1}{c}\), ta có :
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
Nhân hai vế của Bất đẳng thức, ta được:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Dấu = sảy ra \(\Leftrightarrow\hept{\begin{cases}a+b+c=1\\a=b=c\end{cases}\Rightarrow a=b=c=\frac{1}{3}}\)

Bài 3:
a) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\) \(\geq 2.\frac{(1+1)^2}{2xy+x^2+y^2}=\frac{8}{(x+y)^2}=8\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
b) Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{xy}+\frac{1}{x^2+y^2}=\frac{1}{2xy}+\left (\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\geq \frac{1}{2xy}+\frac{(1+1)^2}{2xy+x^2+y^2}\)
\(=\frac{1}{2xy}+\frac{4}{(x+y)^2}\)
Theo BĐT AM-GM:
\(xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}\Rightarrow \frac{1}{2xy}\geq 2\)
Do đó \(\frac{1}{xy}+\frac{1}{x^2+y^2}\geq 2+4=6\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Bài 1: Thiếu đề.
Bài 2: Sai đề, thử với \(x=\frac{1}{6}\)
Bài 4 a) Sai đề với \(x<0\)
b) Áp dụng BĐT AM-GM:
\(x^4-x+\frac{1}{2}=\left (x^4+\frac{1}{4}\right)-x+\frac{1}{4}\geq x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0\)
Dấu bằng xảy ra khi \(\left\{\begin{matrix} x^4=\frac{1}{4}\\ x=\frac{1}{2}\end{matrix}\right.\) (vô lý)
Do đó dấu bằng không xảy ra , nên \(x^4-x+\frac{1}{2}>0\)
Bài 6: Áp dụng BĐT AM-GM cho $6$ số:
\(a^2+b^2+c^2+d^2+ab+cd\geq 6\sqrt[6]{a^3b^3c^3d^3}=6\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(a=b=c=d=1\)

5) a) Đặt b+c-a=x;a+c-b=y;a+b-c=z thì 2a=y+z;2b=x+z;2c=x+y
Ta có:
\(\dfrac{2a}{b+c-a}+\dfrac{2b}{a+c-b}+\dfrac{2c}{a+b-c}=\dfrac{y+z}{x}+\dfrac{x+z}{y}+\dfrac{x+y}{z}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{z}{x}+\dfrac{x}{z}\right)+\left(\dfrac{z}{y}+\dfrac{y}{z}\right)\ge6\)
Vậy ta suy ra đpcm
b) Ta có: a+b>c;b+c>a;a+c>b
Xét: \(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)
.Tương tự:
\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c};\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)
Vậy ta có đpcm
6) Ta có:
\(a^2+b^2+c^2+d^2+ab+cd\ge2ab+2cd+ab+cd=3\left(ab+cd\right)\)
\(ab+cd=ab+\dfrac{1}{ab}\ge2\)
Suy ra đpcm
\(GT\Leftrightarrow\frac{1}{1+a}-1+\frac{1}{1+b}-1+\frac{1}{1+c}-1+\frac{1}{1+d}-1\)\(\ge3-4\)
\(\Rightarrow\frac{-a}{1+a}+\frac{-b}{1+b}+\frac{-c}{1+c}+\frac{-d}{1+d}\ge-1\)
\(\Rightarrow\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}+\frac{d}{1+d}\le1\)
\(\Rightarrow\frac{a\left(1+b\right)+b\left(1+a\right)}{\left(1+a\right)\left(1+b\right)}+\frac{c\left(1+d\right)+d\left(1+c\right)}{\left(1+c\right)\left(1+d\right)}\le1\)
\(\Rightarrow\frac{a+2ab+b}{1+a+b+ab}+\frac{c+2cd+d}{1+c+d+cd}\le1\)
Áp dụng BĐT Cô - si , ta có:
\(1\ge\frac{2\sqrt{ab}+2ab}{1+2\sqrt{ab}+ab}+\frac{2\sqrt{cd}+2cd}{1+2\sqrt{cd}+cd}=\frac{2\sqrt{ab}}{1+\sqrt{ab}}+\frac{2\sqrt{cd}}{1+\sqrt{cd}}\)
\(\Rightarrow1\ge2\left[2\sqrt{\frac{\sqrt{abcd}}{1+\sqrt{ab}+\sqrt{cd}+\sqrt{abcd}}}\right]\)\(=4.\frac{\sqrt[4]{abcd}}{1+\sqrt{ab}+\sqrt{cd}+\sqrt{abcd}}\)
\(\Rightarrow1\ge\frac{4\sqrt[4]{abcd}}{1+2\sqrt[4]{abcd}+\sqrt{abcd}}=\frac{4\sqrt[4]{abcd}}{\sqrt{\left(1+\sqrt[4]{abcd}\right)^2}}\)
\(\Rightarrow4\sqrt[4]{abcd}\le\sqrt{\left(1+\sqrt[4]{abcd}\right)^2}\)
\(\Rightarrow4\sqrt[4]{abcd}\le1+\sqrt[4]{abcd}\)(vì a,b,c,d dương)
\(\Rightarrow3\sqrt[4]{abcd}\le1\)
\(\Rightarrow\sqrt[4]{abcd}\le\frac{1}{3}\)
\(\Rightarrow abcd\le\frac{1}{81}\)
(Dấu "="\(\Leftrightarrow a=b=c=d=\frac{1}{3}\))
Coll boy ! Bài này dòng 5 em áp dụng bất đẳng thức cô-si như vậy là chưa đúng nhé! Em kiểm tra lại mẫu trái dấu em nhé!