Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lí Pi ta go vào tam giác vuông AHB ta có
\(AB^2=AH^2+BH^2\) =>\(BH^2=AB^2-AH^2\)=>\(BH=\sqrt{30^2-24^2}=\sqrt{324}=18\left(cm\right)\)
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có
\(AH^2=BH.CH\)=>\(HC=\frac{AH^2}{BH}\)=>\(HC=\frac{24^2}{18}=\frac{576}{18}=32\left(cm\right)\)
Ta có \(BC=HC+HB\) => \(BC=32+18=50\left(cm\right)\)
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có
\(AC^2=BC.HC\)
=>\(AC=\sqrt{BC.HC}=\sqrt{50.32}=\sqrt{1600}=40\left(cm\right)\)*Chỗ này bạn dùng Pitago tính cũng được nha*
Ta có góc HBD+ góc ABH = 90 độ mà góc ACH + góc ABH = 90 độ
=> góc HBD = góc ACH
Xét tam giác BHD và tam giác CHA có
góc BHD = góc CHA = 90 độ
góc HBD = góc ACH (chứng minh trên)
Do đó tam giác BHD ~ tam giác CHA
=> \(\frac{BD}{BH}=\frac{AC}{HC}\)
=>\(BD=\frac{AC.BH}{HC}=\frac{18.40}{32}=\frac{720}{32}=22,5\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề 1:
a: Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay HB=18(cm)
Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)
Xét ΔACH vuông tại H có
\(AC^2=AH^2+HC^2\)
nên AC=40(cm)
b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có
\(\widehat{HAC}=\widehat{HDB}\)
Do đó: ΔAHC\(\sim\)ΔDHB
Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)
hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
a. Ta có: ∆AHB vuông tại H. Theo định lí Pi-ta-go :
\(BH^2=AB^2-AH^2\)
➞ \(BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18cm\)
Lại có ∆ABC vuông tại A
\(AB^2=BC.BH\)(định lý 1)
➞ \(BC=\frac{AB^2}{BH}\frac{30^2}{18}=50cm\)
Do đó \(AC^2=BC^2-AB^2\)(định lý Py-ta-go)
➝\(AC=\sqrt{BC^2-AB^2=\sqrt{50^2-30^2}=40cm}\)
b. Ta có: ∆ABD vuông tại B, đường cao là BH nên:
\(AB^2=AD.AH\) (định lí 1)
➞\(AD=\frac{AB^2}{AH}=\frac{30^2}{24}=37,5\left(cm\right)\)
Do đó HD=AD−AH=37,5−24=13,5(cm)
➞\(BD^2=AD.HD\)(Định lý 1)
➞\(BD=\sqrt{AD.HD}\)=\(\sqrt{37,5.13,5}=22,5\left(cm\right)\)
bạn chép thiếu đề kia