K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2018

a) Xét tam giác ABC có

BC2=AB2+AC2 (py-ta-go)

=> BC2=152+202=625

=> BC=25(cm)

xét tam giác ABC và tam giác HBC có

\(\widehat{BAC}=\widehat{AHC}\left(=90^0\right)\)

\(\widehat{C}\)chung

\(\Rightarrow\Delta ABC\sim\Delta HAC\)(g-g)

=> \(\dfrac{AB}{AH}=\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

\(\dfrac{AB}{AH}=\dfrac{BC}{AC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{15.20}{25}=12\)(cm)

17 tháng 6 2018

b) xét tam giác HAC vuông tại H có

AC2=AH2+HC2 (py-ta-go)

=> HC2=AC2-AH2=202-122=256

=> HC=16cm

Xét tam giác HAB vuông tại H có

AB2=AH2+HB2 (py-ta-go)

=> HB2=AB2-AH2=152-122=81

=> HB=9 cm

11 tháng 5 2017

bạn tự vẽ hình nka !!!

a) , b) Theo định lí Py - ta - go trong   \(\Delta ABC\)vuông tại A , ta có : 

\(BC^2=AB^2+AC^2=15^2+20^2=625\)\(\Leftrightarrow BC=\sqrt{625}=25\left(cm\right)\)

    Xét \(\Delta AHB\)và   \(\Delta CAB\)có :

\(\widehat{ABC}\)chung     ;        \(\widehat{BHA}=\widehat{BAC}=90\)độ

\(\Leftrightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\)

Ta có tỉ lệ : \(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)

\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{15\cdot20}{25}=12\left(cm\right)\)

\(\Leftrightarrow BH=\frac{AB^2}{BC}=\frac{15^2}{25}=9\left(cm\right)\)

\(\Leftrightarrow CH=BC-BH=25-9=16\left(cm\right)\)

c) ta có :    \(AM=\frac{BC}{2}=\frac{25}{2}=12,5\left(cm\right)\)   ( do AM là đường trung tuyến ứng với cạnh huyền BC )

  Theo định lí Py - ta - go trong   \(\Delta AHM\)vuông tại H , ta có : 

\(HM^2=AM^2-AH^2=12,5^2-12^2=12,25\)\(\Leftrightarrow HM=\sqrt{12,25}=3,5\left(cm\right)\)

\(\Rightarrow S_{AHM}=\frac{1}{2}\cdot AH\cdot HM=\frac{3,5\cdot12}{2}=\frac{42}{2}=21\left(cm^2\right)\)

TK CKO MK NKA !!!

29 tháng 5 2021

  A B C 15 20 H M I D

có đôi chỗ mình làm tắt nhé, hình hết chỗ vẽ nên mình vẽ tạm xuống dưới nhé

a, Ta có : \(S_{AHM}=\frac{1}{2}.AH.HM\)(*)

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=400+225=625\Rightarrow BC=25\)cm 

Vì AM là đường trung tuyến : \(BM=CM=\frac{BC}{2}=\frac{25}{2}\)cm 

Dễ có : \(AB^2=BH.BC\)( dựa vào tỉ số đồng dạng nhé ) 

\(\Rightarrow BH=\frac{AB^2}{BC}=9\)cm 

Mà \(BM=BH+HM\Rightarrow HM=BM-BH=\frac{25}{2}-9=\frac{7}{2}\)cm

Lại có : \(BC=BH+CH\Rightarrow CH=BC-BH=25-9=16\)cm 

Dễ có : \(AH^2=CH.BH=16.9=144\Rightarrow AH=12\)cm 

Thay vào (*) ta được : 

Vậy : \(S_{AHM}=\frac{1}{2}.12.\frac{7}{2}=\frac{84}{4}=21\)cm2

29 tháng 5 2021

21 cm mik nghĩ tke

Bài làm

b) Xét tam giác HAP có:

Q là trung điểm BH

P là trung điểm AH

=> QP là đường trung bình

=> QP // AB 

=> \(\widehat{HQP}=\widehat{QPA}\)

Xét tam giác HQP và tam giác ABC có:

\(\widehat{HQP}=\widehat{QPA}\)

\(\widehat{PHQ}=\widehat{BAC}\left(=90^0\right)\)

=> Tam giác HQP ~ Tam giác ABC ( g - g )

=> \(\frac{HQ}{AB}=\frac{HP}{AC}\Rightarrow\frac{AC}{AB}=\frac{HP}{HQ}\Rightarrow\frac{AB}{AC}=\frac{HQ}{HP}\)             (1)

Xét tam giác HAB có: 

QP // AB

=> Tam giác HQP ~ HAB 

=> \(\frac{HQ}{QB}=\frac{HP}{PA}\Rightarrow\frac{HQ}{HP}=\frac{QB}{PA}\)             (2)

Từ (1) và (2) => \(\frac{AB}{AC}=\frac{QB}{PA}\)

Xét tam giác AHC vuông ở H có: 

\(\widehat{PAC}+\widehat{BCA}=90^0\)(3)

Xét tam giác ABC vuông ở A có:

\(\widehat{CBA}+\widehat{BCA}=90^0\)  (4)

Từ (3) và (4) => \(\widehat{PAC}=\widehat{CBA}\)

Xét tam giác ABQ và tam giác CAP có:

\(\frac{AB}{AC}=\frac{QB}{PA}\)

\(\widehat{PAC}=\widehat{CBA}\)

=> Tam giác ABQ ~ Tam giác CAP ( c-g-c ) ( đpcm )

Bài làm

a) Vì AM là trung tuyến

=> M là trung điểm BC 

=> BM = MC = BC/2 = ( BH + HC )/2 = ( 9 + 16 )/2 = 12,5 ( cm )

Ta có: BH + HM + MC = BC

=> BH + HM + MC = BH + HC

hay 9 + HM + 12,5 = 9 + 16

=> HM = 9 + 16 - 9 - 12,5 

=> HM = 3,5 ( cm )

Vì tam giác ABC là tam giác vuông ở A

Mà AM trung tuyến

=> AM = MC = BM = 12,5 ( cm )

Xét tam giác AHM vuông ở H có:

Theo định lí Pytago có:

AH2 = AM2 - HM2 

hay AH2 = 12,52 - 3,52 

=> AH2 = 156,25 - 12,25

=> AH2 = 144

=> AH = 12 ( cm )

SABC = 1/2 . AH . HM = 1/2 . 12 . 3,5 = 21 ( cm2 )

Xét tam giác AHB vuông ở H có:

Theo định lí Py-ta-go có:

AB2 = BH2 + AH2 

=> AB2 = 92 + 212 

=> AB2 = 81 + 441

=> AB2 = 522

=> AB \(\approx\)22,8 ( cm )

Xét tam giác AHC vuông ở H có: 

Theo định lí Pytago có:

AC2 = AH2 + HC2 

=> AC2 = AH2 + ( HM + MC )2 

hay AC2 = 212 + ( 3,5 + 12,5 )2 

=> AC2 = 441 + 256

=> AC2 = 697

=> AC \(\approx\)26,4 ( cm )

Chu vi tam giác ABC là: AB + AC + BC = 22,8 + 26,4 + 25 = 74,2 ( cm )

SABC = 1/2 . AH . BC = 1/2 . 21 . 25 = 262,5 ( cm2 )