Cho ∆ABC vuông tại A (AB < AC). Tia phân giác của góc B cắt AC tại D. Trên cạnh...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 giờ trước (10:47)

a: Xét ΔBAD và ΔBED có

BA=BE

\(\hat{ABD}=\hat{EBD}\) (BD là phân giác của góc ABE)

BD chung

Do đó: ΔBAD=ΔBED

=>DA=DE

b: ΔBAD=ΔBED

=>\(\hat{BAD}=\hat{BED}\)

=>\(\hat{BED}=90^0\)

=>DE⊥BC

mà AH⊥BC

nên DE//AH

c: Xét ΔMHA và ΔMDK có

MH=MD

\(\hat{MHA}=\hat{MDK}\) (hai góc so le trong, HA//DK)

HA=DK

Do đó: ΔMHA=ΔMDK

=>\(\hat{HMA}=\hat{DMK}\)

\(\hat{HMA}+\hat{AMD}=180^0\) (hai góc kề bù)

nên \(\hat{AMD}+\hat{DMK}=180^0\)

=>A,M,K thẳng hàng

11 giờ trước (12:59)

Chúng ta sẽ giải từng câu hỏi trong bài toán này.

Câu a) Chứng minh ∆ABD = ∆EBD và AD = ED

  • Điều kiện:
    • ∆ABC vuông tại A (AB < AC).
    • Tia phân giác của góc B cắt AC tại D.
    • Trên cạnh BC lấy điểm E sao cho BE = BA.
    • Vẽ AH BC tại H.
  • Chứng minh:
  1. Xét các tam giác ∆ABD và ∆EBD:
    Vậy, theo Tiêu chuẩn góc-cạnh-góc (Axiom SAS), ta có:
    \(\Delta A B D = \Delta E B D\)
    • Cả hai tam giác ∆ABD và ∆EBD có cạnh chung BD.
    • AB = BE (do đề bài cho BE = BA).
    • Góc ABD = Góc EBD (vì tia BD là tia phân giác của góc ABC, nên hai góc này bằng nhau).
  2. Kết luận AD = ED:
    • Do ∆ABD = ∆EBD (theo chứng minh trên), nên các cạnh tương ứng của hai tam giác này cũng bằng nhau.
    • Vậy, AD = ED.

Câu b) Chứng minh AH // DE

  1. Xét đoạn AH và DE:
    • Từ điều kiện bài toán, chúng ta có điểm H là giao điểm của đường vuông góc AH với cạnh BC, tức là AH ⊥ BC.
    • Tia DE được dựng sao cho DE là một đoạn thẳng trong cùng một mặt phẳng với BC, và điểm D là điểm phân giác của góc B.
  2. Chứng minh AH // DE:
    • Vì ∆ABD = ∆EBD (chứng minh ở câu a) nên các góc tương ứng của hai tam giác này cũng bằng nhau. Đặc biệt, ∠BAD = ∠BED.
    • Ta có AH ⊥ BC và ∠BAD = ∠BED. Do đó, theo tính chất của góc tạo thành giữa đường vuông góc và đoạn thẳng, ta suy ra rằng AH // DE.

Câu c) Chứng minh A, M, K thẳng hàng

  1. Định nghĩa các điểm:
    • Trên tia DE, lấy điểm K sao cho DK = AH.
    • M là trung điểm của DH, tức là:
      \(\text{DM} = \text{MH}\)
  2. Chứng minh A, M, K thẳng hàng:
    • Ta đã biết rằng AH // DE, và từ câu b) đã chứng minh rằng AH và DE song song.
    • M là trung điểm của DH, tức là DM = MH. Đồng thời, ta có DK = AH (theo giả thiết).
    • Vì AH // DE và M là trung điểm của DH, ta có thể sử dụng tính chất của các đường trung tuyến trong tam giác vuông để suy ra rằng các điểm A, M, K nằm trên cùng một đường thẳng.

Kết luận:

  1. a) ∆ABD = ∆EBD và AD = ED.
  2. b) AH // DE.
  3. c) A, M, K thẳng hàng.
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.a) Chứng minh: Tam giác BAD = Tam giác BMDb) Chứng minh: DM vuông góc BCc) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DMd) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.2) Cho tam giác ABC...
Đọc tiếp

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.

a) Chứng minh: Tam giác BAD = Tam giác BMD

b) Chứng minh: DM vuông góc BC

c) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DM

d) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.

2) Cho tam giác ABC có AB < AC. Trên tia AC lấy E sao cho: AE = AB. Gọi H là trung điểm của BE.

a) Chứng minh: AH là tia phân giác của \(\widehat{A}\)

b) Gọi D là giao của AH và BC; Chứng minh: BD = DE

c) Qua E vẽ đường thẳng song song với AD cắt BC tại M. Tính số đo \(\widehat{BEM}\)

d) Trên tia đối của tia BA lấy N sao cho: BN = CE. Chứng minh: 3 điểm E, D, N thẳng hàng

Mong các bạn giúp đỡ!

0
3 tháng 4 2019

A B C H D K 1 2

                     

3 tháng 4 2019

a) Vì BA=BA ( GT )

\(\Rightarrow\Delta BAD\) cân tại B ( đn)

\(\Rightarrow\widehat{BAD}=\widehat{BDA}\)( tính chất )      (4)

b) Vì tam giác HAD vuông tại H \(\Rightarrow\widehat{HAD}+\widehat{D1}=90^0\)( phụ nhau )    (1)

Ta có: \(\widehat{DAC}+\widehat{DAB}=\widehat{BAC}=90^0\)( h.vẽ)      (2)

 Từ (1) và (2) \(\Rightarrow\widehat{HAD}+\widehat{BDA}=\widehat{DAC}+\widehat{DAB}\)( 3)

Từ (3) và (4) \(\Rightarrow\widehat{HAD}=\widehat{CAD}\)mà AD nằm giữa 2 tia AH và AC ( c.ve)

\(\Rightarrow AD\)là phân giác của góc HAC.

c)  Xét \(\Delta HAD\)và \(\Delta CAD\)có:

           \(\hept{\begin{cases}\widehat{AHD}=\widehat{ACD}=90^0\\ADchung\\\widehat{HAD}=\widehat{CAD}\left(cmt\right)\end{cases}\Rightarrow\Delta HAD=\Delta CAD\left(ch-gn\right)}\)

\(\Rightarrow\hept{\begin{cases}HD=CD\left(2canhtuongung\right)\\AH=AK\left(2canhtuongung\right)\end{cases}}\)

Xét tam giác DHC có HD=CD ( cmt)

\(\Rightarrow\Delta DHC\)cân tại D

\(\Rightarrow\widehat{DHC}=\widehat{DCH}\left(tc\right)\) (5)

Ta có:  \(\widehat{H1}+\widehat{DHC}=\widehat{AHD}=90^0\) (6)

            \(\widehat{K1}+\widehat{DCH}=\widehat{AKD}=90^0\)(7)

Từ (5) , (6) và (7) \(\Rightarrow\widehat{H1}=\widehat{K1}\)

\(\Rightarrow\Delta AHK\)cân tại A.

d) Xét tam giác DKC vuông tại K nên \(DC>KC\)( tính chất )

                                                    \(\Rightarrow DC+AK>KC+AK\)

                                            mà AH=AK ( cmt)

                                                     \(\Rightarrow DC+AH>KC+AK\)

                                                      \(\Rightarrow DC+AH+BD>KC+AK+BD\)

                                                        mà AB=BD ( cmt)

                                                      \(\Rightarrow AK+KC+AB< DC+BD+AH\)

                                                       \(\Rightarrow AB+AC< BC+AH\left(đpcm\right)\)

                                           

( p/s: Đánh giấu cho tôi kí hiệu góc H1 và K1 nhé chắc bạn biết mà )

a: Xét ΔAHB và ΔAHC có

AB=AC
\(\hat{HAB}=\hat{HAC}\)

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\hat{AHB}=\hat{AHC}\)

\(\hat{AHB}+\hat{AHC}=180^0\) (hai góc kề bù)

nên \(\hat{AHB}=\hat{AHC}=\frac{180^0}{2}=90^0\)

=>AH⊥BC tại H

b: ΔAHB=ΔAHC

=>HB=HC

=>H là trung điểm của BC

Xét ΔABC có

AH,BD là các đường trung tuyến

AH cắt BD tại G

Do đó: G là trọng tâm của ΔABC

=>\(AG=\frac23AH=\frac23\cdot6=4\left(\operatorname{cm}\right)\)

c: Ta có: HK//AC

=>\(\hat{KHB}=\hat{ACB}\) (hai góc đồng vị)

\(\hat{KBH}=\hat{ACB}\) (ΔABC cân tại A)

nên \(\hat{KBH}=\hat{KHB}\)

=>KB=KH

Ta có: HK//AC

=>\(\hat{KHA}=\hat{HAC}\) (hai góc so le trong)

\(\hat{HAC}=\hat{KAH}\) (AH là phân giác của góc BAC)

nên \(\hat{KHA}=\hat{KAH}\)

=>KH=KA

mà KB=KH

nên KA=KB

=>K là trung điểm của AB

Xét ΔABC có

K là trung điểm của AB

G là trọng tâm

Do đó: C,G,K thẳng hàng

26 tháng 8

a) Chứng minh rằng tam giác AHB = tam giác AHC và AH vuông góc với BC

✳️ Dữ kiện:

  • Tam giác ABC cân tại A ⇒ \(A B = A C\)
  • \(A H\) là phân giác ⇒ \(\hat{B \hat{A} H} = \hat{C \hat{A} H}\)

✳️ Xét 2 tam giác \(\triangle A H B\) và \(\triangle A H C\):

So sánh:

  • \(A B = A C\) (do tam giác cân tại A)
  • \(\hat{B \hat{A} H} = \hat{C \hat{A} H}\)(do \(A H\) là phân giác)
  • Cạnh chung: \(A H\)

✅ Suy ra:

\(\triangle A H B = \triangle A H C (\text{c}-\text{g}-\text{c})\)


✳️ Suy ra: \(H B = H C\) và \(\hat{A H B} = \hat{A H C}\)

→ Mà \(H B = H C\), nên \(H\) cách đều \(B\) và \(C\)

⇒ \(A H\) là đường phân giác đồng thời là trung tuyến trong tam giác cân

→ Trong tam giác cân, đường phân giác ứng với đỉnh cân còn là đường cao

✅ Vậy \(A H \bot B C\)


b) Điểm D là trung điểm của AC, BD cắt AH tại G. Biết AH = 6cm. Tính AG

✳️ Dữ kiện:

  • \(D\): trung điểm của \(A C\)
  • \(B D\) cắt \(A H\) tại \(G\)
  • \(\triangle A B C\) cân tại A ⇒ \(A B = A C\)
  • Mà \(D\): trung điểm của \(A C\) ⇒ không đối xứng hoàn toàn, nhưng vẫn đủ điều kiện dùng định lý Menelaus hoặc định lý trọng tâm nếu phù hợp

→ Tuy nhiên, vì:

  • \(D\) là trung điểm \(A C\)
  • \(A B = A C\) ⇒ \(B\) đối diện với cạnh có điểm trung điểm
  • Áp dụng định lý trung tuyến, trong tam giác \(A B C\), khi nối đỉnh \(B\) với trung điểm \(D\) của \(A C\), thì:

\(\text{Giao}\&\text{nbsp};đ\text{i}ể\text{m}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; B D \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp}; A H \&\text{nbsp};(\text{trong}\&\text{nbsp};\text{tam}\&\text{nbsp};\text{gi} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{c} \hat{\text{a}} \text{n}\&\text{nbsp};\text{c} \overset{ˊ}{\text{o}} \&\text{nbsp};\text{AH}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};đườ\text{ng}\&\text{nbsp};\text{cao}) \Rightarrow G \&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp};\text{tr}ọ\text{ng}\&\text{nbsp};\text{t} \hat{\text{a}} \text{m}\&\text{nbsp};\text{c}ủ\text{a}\&\text{nbsp}; \triangle A B C\)

✳️ Vậy \(G\) là trọng tâm của tam giác \(A B C\)

⇒ Trong tam giác, trọng tâm chia đường trung tuyến theo tỉ lệ:

\(A G : G H = 2 : 1\)

→ \(A H = A G + G H = 3 p h \overset{ˋ}{\hat{a}} n\)

→ \(A G = \frac{2}{3} \cdot A H = \frac{2}{3} \cdot 6 = \boxed{4 \&\text{nbsp};\text{cm}}\)


c) Từ điểm H kẻ đường thẳng song song với AC cắt AB tại K. Chứng minh ba điểm C, G, K thẳng hàng

✳️ Dữ kiện:

  • \(H K \parallel A C\)\(K \in A B\)
  • G là giao điểm của \(A H\) và \(B D\)
  • D là trung điểm của \(A C\)

✳️ Ý tưởng:

Ta sẽ sử dụng định lý Talet hoặc đồng dạng tam giác

✳️ Phân tích:

Vì \(H K \parallel A C\), và \(H \in A H\)\(K \in A B\), nên:

\(\triangle H A K sim \triangle C A C \left(\right. đ \overset{ˋ}{\hat{\text{o}}} \text{ng}\&\text{nbsp};\text{d}ạ\text{ng}\&\text{nbsp};\text{do}\&\text{nbsp};\text{g} \overset{ˊ}{\text{o}} \text{c}\&\text{nbsp};-\&\text{nbsp};\text{g} \overset{ˊ}{\text{o}} \text{c} \left.\right)\)

Mặt khác, trong tam giác \(A B C\), ta có:

  • \(D\) là trung điểm của \(A C\)
  • \(B D\) cắt \(A H\) tại \(G\) (đã biết)
  • Kẻ \(H K \parallel A C\), cắt \(A B\) tại \(K\)

→ Xét hình thang \(K H C A\), có \(H K \parallel A C\)

Kết luận quan trọng:

  • Đường thẳng đi qua \(H\) song song với \(A C\) cắt \(A B\) tại \(K\)
  • Khi đó, do cấu trúc cân, trung điểm, trọng tâm → ta có thể chứng minh 3 điểm \(C , G , K\) thẳng hàng bằng định lý Menelaus đảo hoặc dùng tỉ lệ đoạn thẳng trong tam giác

✅ Cách chứng minh gọn:

Trong tam giác cân \(A B C\):

  • \(G\): là trọng tâm
  • \(D\): trung điểm \(A C\)
  • \(B D\) cắt \(A H\) tại \(G\)
  • \(H K \parallel A C\) ⇒ theo định lý giao tuyến phụ\(C K\) cắt \(B D\) tại trọng tâm \(G\)

→ Ba điểm \(C , G , K\) thẳng hàng.


✅ Kết luận:

  • a) \(\triangle A H B = \triangle A H C\), và \(A H \bot B C\)
  • b) \(A G = 4 \&\text{nbsp};\text{cm}\)
  • c) \(C , G , K\) thẳng hàng
7 tháng 2 2022

a) Ta có: OC=OA+AC

OD=OB+BD

Mà OA=OB và AC=BD (gt)

=>OC=OD

Xét Δ OAD và Δ OBC có:

OA=OB (gt)

ˆOO^ góc chung

OC=OD (cmt)

=> Δ OAD=Δ OBC (c.g.c)

=> AD=BC (2 cạnh tương ứng)

Δ OAD=Δ OBC (cmt)

=> ˆD=ˆCD^=C^ và ˆA1=ˆB1A1^=B1^ (2 góc tương ứng)

Mà ˆA1+ˆA2=ˆB1+ˆB2A1^+A2^=B1^+B2^= 180(kề bù)

=> ˆA2=ˆB2A2^=B2^

Δ EAC và Δ EBD có:

ˆC=ˆDC^=D^ (cmt)

AC=BD (gt)

ˆA2=ˆB2A2^=B2^ (cmt)

=> Δ EAC= ΔEBD (g.c.g)

c) Δ EAC=ΔEBD (cmt)

=> EA=EB (2 cạnh tương ứng)

ΔOBE và Δ OAE có:

OB=OA (gt)

ˆB1=ˆA1B1^=A1^ (cmt)

EA=EB (cmt)

=>Δ OBE=Δ OAE (c.g.c)

=> ˆO1=ˆO2O1^=O2^ (2 góc tương ứng)

Vậy OE là phân giác ˆxO