Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì a,b,c là độ dài ba cạnh của một tam giác nên ta có :
\(\begin{cases}a+b>c\\c+a>b\\b+c>a\end{cases}\) \(\Leftrightarrow\begin{cases}ac+bc>c^2\\ab+bc>b^2\\ab+ac>a^2\end{cases}\) \(\Rightarrow a^2+b^2+c^2>2\left(ab+bc+ac\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a+b+c=0\Rightarrow\hept{\begin{cases}a=-b-c\\b=-a-c\\c=-a-b\end{cases}}\)
\(ab+bc+ac=\left(-b-c\right).b+\left(-a-c\right).c+\left(-a-b\right).a\)
\(=-\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\)
\(\Rightarrow2.\left(ab+bc+ac\right)=-\left(a^2+b^2+c^2\right)\le0\)
\(\Rightarrow ab+bc+ac\le0\)(đpcm)
Boul đẹp trai_tán gái đổ 100%:mik có cách khác nè:3
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
Do \(a^2+b^2+c^2\ge0\Rightarrow2\left(ab+bc+ca\right)\le0\Rightarrowđpcm\)
Theo bất đẳng thức tam giác:
\(\hept{\begin{cases}a< b+c\\b< a+c\\c< a+b\end{cases}}\Rightarrow\hept{\begin{cases}a^2< ab+ac\\b^2< ab+bc\\c^2< ac+bc\end{cases}}\)
Cộng các bất đẳng thức lại với nhau có điều cần CM