Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất dãy tủ số bằng nhau, ta có:
\(\frac{a+b-c}{c}\) = \(\frac{a-b+c}{b}\) = \(\frac{-a+b+c}{a}\) = \(\frac{a+b+c}{a+b+c}\) = 1
=>\(\frac{a+b-c}{c}\) = 1
a+b-c = c
a+b =2c
=>\(\frac{a-b+c}{b}\) = 1
a-b+c = c
a+c =2b
=>\(\frac{-a+b+c}{a}\) = 1
-a+b+c = a
b+c =2a
Thay a+b =2c , a+c =2b , b+c =2a vào biểu thức:
M=\(\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\) = \(\frac{2c.2b.2a}{abc}\) = \(\frac{2^3abc}{abc}\) = 23 =8

có:a+b-c /c= a-b+c / b = -a+b+c / a = a+b-c+a-b+c -a+b+c / c+b+a = a+b+c / c+b+a=1
=> a+b-c/ c =1 => a+b-c = c => a+b = c+c=2c
a-b+c/ b =1 => a-b+c= b => a+c = b+b= 2b
-a+b+c / a =1 => -a+b+c = a => b+c =a+a=2a
có M= ( a+b)(b+c)(c+a) / abc
= 2c . 2a . 2b / abc
= 8abc/abc
=8
vậy M=8
= 2c . 2a.

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+a-a+b-b+b-c+c+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\) (Tính chất dãy các tỉ số bằng nhau) Do đó:
\(\frac{a+b-c}{c}=1\Rightarrow\frac{a+b}{c}-1=1\Rightarrow\frac{a+b}{c}=2\)
\(\frac{a-b+c}{b}=1\Rightarrow\frac{a+c}{b}-1=1\Rightarrow\frac{a+c}{b}=2\)
\(\frac{-a+b+c}{a}=1\Rightarrow\frac{b+c}{a}-1=1\Rightarrow\frac{b+c}{a}=2\)
\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{a+b}{c}.\frac{b+c}{a}.\frac{a+c}{b}=2.2.2=8\)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\hept{\begin{cases}a+b-c=c\\a-b+c=b\\-a+b+c=a\end{cases}\Rightarrow\hept{\begin{cases}a+b-c+c=c+c\\a-b+b+c=b+b\\-a+a+b+c=a+a\end{cases}\Rightarrow}\hept{\begin{cases}a+b=2c\\a+c=2b\\b+c=2a\end{cases}}}\)
Thay các tổng a + b ; a + c ; b + c vào biểu thức M , ta có :
\(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=\frac{8.abc}{abc}=8\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{c+b+a}=\frac{a+b+c}{a+b+c}=1\)
=> \(\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)
\(\frac{a-b+c}{b}=1\Rightarrow a+c=2b\)
\(\frac{-a+b+c}{a}=1\Rightarrow b+c=2a\)
Vậy \(M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2b.2a}{abc}=\frac{8abc}{abc}=8\)

Ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+a+c+b+a}=\frac{1}{2}\)
\(\Rightarrow\begin{cases}2a=b+c\\2b=c+a\\2c=b+a\end{cases}\)
Thay vào M ta có :
\(A=\frac{2a}{a}+\frac{2b}{b}+\frac{2c}{c}=2+2+2=6\)
=> M = 6 \(\forall a;b;c\)
Vậy giá trị của M không phụ thuộc vào giá trị của các biến a ; b ; c

Câu hỏi của Trần Đức Tuấn - Toán lớp 9 - Học toán với OnlineMath
Theo t/ch DTSBN ta có
(a+b-c+a-b+c-a+b+c)/(c+b+a)
=(a+b+c)/(a+b+c)=1
Ta có:
\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}\)
\(\Rightarrow\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)