Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Theo mình nghĩ thì đề thiếu là tam giác ABC vuông tại A nhé!
Bạn xem lại đề!:)

lê tiến trường
\(\left|x-564\right|=532\)
\(\Rightarrow\left[{}\begin{matrix}x-564=532\\x-564=-532\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=532+564=1096\\x=\left(-532\right)+564=32\end{matrix}\right.\)
Vậy x = 1096 và x = 32
TH1: x-564=532
x= 532+564
x= 1098
TH2: x-564=-532
x= -532+564
x= 34
X thuộc( phải bằng dau) \(\left\{34,1098\right\}\)

A B H E C D I
Từ D hạ DI vuông góc với AH sao cho I thuộc AH => Góc AID = 90 độ
Xét tam giác vuông ABH và tam giác vuông DIA có: AB=AD (gt),
\(\widehat{A_1}+\widehat{A_2}=90^o\) mà \(\widehat{A_2}+\widehat{D_1}=90^o\) => \(\widehat{A_1}=\widehat{D_1}\) , \(\widehat{AID}=\widehat{AHB}=90^o\)
=> Tam giác AHB= tam giác DIA (ch-gn) => AH=DI (1)
Xét tứ giác IHDE có : \(\widehat{HID}=\widehat{IHE}=\widehat{HED}=90^o\) => Tứ giác IHED là hình chữ nhật => HE=DI (2)
Từ (1) và (2) => HA=HE => đpcm

2.
a) +) ta co: tam giác GLO
GL = 6, LO = 8, OG = 10
=> GL < LO < GO ( 6<8<10)
=> góc O < góc G < góc L ( quan hệ giữa góc và cạnh đối diện trong tam giác LOG )
+) ta co: tam giac UVW
góc V = 40, góc U = 50
=> góc W = 180 - ( góc V + goc Ư )
= 180 - ( 50 + 40)
= 90
=> góc V < góc U < góc W
=> UW < VW < VU ( quan hệ giữa cạnh và góc trong tam giác ACB )

x y A C D O B E
Kéo dài CO sao cho CO cắt DB tại E
Ta chứng minh được \(\Delta AOC=\Delta BOE\left(g-c-g\right)\)
\(\Rightarrow\) OC=OE và AC=BE
Mà \(B\in DE\) => BE+BD=DE => AC+BD=DE (1)
Do OC=OE mà \(O\in CE\) => O là trung điểm của CE. Mà \(OD\perp OC\Rightarrow OD\perp CE\) => OD là trung trực của CE => CD=ED (2)
Từ (1) và (2) => AC+BD=CD
Vậy CD=AC+BD

Vì \(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\) nên:
\(f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)
\(f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000\)
\(f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000\)
Vậy \(f\left(32\right)=100000\)

Hình bạn tự vẽ nha !
Chứng minh
a, Áp dụng định lí Pi-ta-go vào \(\Delta ABC\) vuông tại A , ta có :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC^2=8^2+6^2=64+36=100\)
\(\Rightarrow BC=10\)
b, Xét \(\Delta BEA\) và \(\Delta DEA\) có :
AB = AD (gt)
\(\widehat{BAE}=\widehat{DAE}\) (=1v)
AE chung
\(\Rightarrow\Delta BEA=\Delta DEA\left(c.g.c\right)\)
c, Xét \(\Delta BCD\) có CA là đường trung tuyến ứng với cạnh BD và \(EA=\dfrac{1}{3}AC\) nên E là trọng tâm của \(\Delta BCD\)
Vậy DE đi qua trung điểm của cạnh BC

P tham khảo nha:
https://olm.vn/hoi-dap/question/436002.html
https://olm.vn/hoi-dap/question/88206.html
Xét tam giác AMB và tam giác AMC
Có: AB=AC (gt)
AM chung
MC=MB (B là trung điểm)
=>Tam giác AMB=tam giác AMC (c.c.c)
=>Góc AMB=góc AMC (2 góc tương ứng)
=>Góc AMB=góc AMC=90 độ
=>AM vuông góc với BC (đpcm)
Đây bạn nhé, chúc học tốt!!!
Xét △ ABC có AB=AC
⇒ △ ABC cân tại A
Vì M là trung điểm của BC
⇒ AM là đường trung tuyến
mà trong tam giác cân đường trung tuyến đồng thời là đường cao
⇒AM⊥BC