Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) AC = ?
Áp dụng định lí Pytago vào ΔABC vuông tại B, ta có:
AC2 = AB2 + BC2
= 52 + 122 = 25 + 144 = 169
⇒ AC = 13 (cm)
b) ΔEAD cân
Xét hai tam giác vuông ABE và DBE có:
AB = BD (gt)
BE là cạnh chung
Do đó: ΔABE = ΔDBE (hai cạnh góc vuông)
⇒ EA = ED (hai cạnh tương ứng)
⇒ ΔEAD cân tại E.
c) K là trung điểm của DC.
Ta có: BE = 4, BC = 12
⇒ BE = 1/3 BC
Hay E là trọng tâm của ΔACD.
⇒ AE là đường trung tuyến ứng với cạnh DC
⇒ K là trung điểm của DC.
d) AD < 4EK
Ta có: EA > AB, ED > BD
Mà AD = AB + BD, AE = ED (câu b)
⇒ 2AE > AD
Và EK = 1/2EA , nhân 2 vế cho 4. Ta được: 4EK = 2EA
Vì 2AE > AD (cmt), 4EK = 2EA ⇒ 4EK > AD (đpcm)

E B A C M D O
a) Xét tam giác CMA và tam giác BMD có :
\(\hept{\begin{cases}MC=MB\\AM=MD\\\widehat{AMC}=\widehat{BMD}\end{cases}\Rightarrow\Delta CMA=\Delta BMD}\)
=> \(\hept{\begin{cases}AC=BD\\\widehat{BDM}=\widehat{ACM}\end{cases}\Rightarrow BD//AC}\)
=> ACBD là hình bình hành
=> \(\hept{\begin{cases}AB=CD\\AB//CD\end{cases}}\)=> đpcm
b) Xét tam giác ABC và tam giác CDA có :
\(\hept{\begin{cases}AB=CD\\\widehat{CAB}=\widehat{ACD}=90^∗\end{cases}\Rightarrow\Delta ABC=\Delta CDA}\)( Lưu ý : Vì không có dấu kí hiệu " độ " nên em dùng tạm dấu *)
Chung AC
=> AD=BC
=> \(AM=\frac{1}{2}.AD=\frac{1}{2}.BC\)=> đpcm
c) Xét tam giác ABC có :
M là trung điểm BC
A là trung điểm CE
Từ 2 điều trên =>AM là đường trung bình => AM//BE ( đpcm )
e) AM //BE => AD // BE
Tam giác CBE có BA vừa là đường cac ,vừa là trung tuyến => tam giác CBE cân ở B
=> \(\hept{\begin{cases}BC=BE\\AD=BC\end{cases}\Rightarrow AD=EB}\)
Mà AD//BE => ABDE là hình bình hành => AB cắt DE ở trung điểm
=> E,O , D thẳng hàng => đpcm

A B C E D F
D)VÌ\(\Delta ADF=\Delta EDC\left(cmt\right)\)
\(\Rightarrow\widehat{ADF}=\widehat{EDC}\)(HAI GÓC TƯƠNG ỨNG)
TA CÓ \(\widehat{ADE}+\widehat{EDC}=180^o\left(KB\right)\)
THAY \(\widehat{ADE}+\widehat{ADF}=180^o\)
\(\widehat{FDE}=180^o\)
=> BA ĐIỂM F ,D,E THẲNG HÀNG

4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a: XétΔABC có \(AC^2=BA^2+BC^2\)
nên ΔBAC vuông tại B
b: Xét ΔEAD có
EB là đường cao
EB là đường trung tuyến
Do đó: ΔEAD cân tại E
c: Xét ΔCDA có
CB là đường cao
CE=2/3CB
Do đó: E là trọng tâm của ΔCDA
=>AE là đường trung tuyến ứng với cạnh CD
mà K là trung điểm của CD
nên A,E,K thẳng hàng