Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, AH là đường cao của tam giác ABC (gt)
Tam giác ABC vuông cân tại A (gt)
=> AH đồng thời là đường phân giác của tam giác ABC (đl)
=> góc HAB = 1/2 góc BAC (đl)
mà góc BAC = 90 do tam giác ABC vuông cân tại A (gt)
=> góc HAB = 90 : 2 = 45 (1)
HE là phân giác của góc CHA (gt)
=> góc EHA = 1/2 góc CHA (Đl)
mà góc CHA = 90 do AH là đường cao (gt)
=> góc EHA = 90 : 2 = 45 (2)
(1)(2) => góc EHA = góc HAB = 45 mà 2 góc này sole trong
=> EH // AD (đl)
xét tứ giác ADHE
=> ADHE là hình thang
b, chứng minh đường trung bình
![](https://rs.olm.vn/images/avt/0.png?1311)
xét tam giác KHI có HD là phân giác trong, ta được : DI/DK=IH/KH (1)
Cũng tam giác KHI có HE là phân giác ngoài do đó: EI/EK=IH/HK(2)
1 và 2 suy ra DI/DK=EI/EK
suy ra điều phải chứng minh thôi bạn
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(\Delta ABC\)và \(\Delta HBA\)có:
\(\widehat{ABC}=\widehat{AHB}=90^o\)
\(\widehat{BAC}\) chung
\(\Rightarrow \Delta ABC \sim \Delta HBA\) (g-g)
b, Ta có: \(\Delta ABC \sim \Delta HBA\) (g-g) \(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\)\(\Rightarrow AB.AC=AH.BC\)
c, \(\Delta ABC\)có: \(\widehat{BAC}=90^o\)
\(\Rightarrow BC^2=AB^2+AC^2\)(định lý Py-ta-go)
hay \(10^2=6^2+AC^2\)
\(AC^2=64\)
\(AC=8\left(cm\right)\)
Ta có: \(\frac{AC}{AH}=\frac{BC}{AB}\left(cmt\right)\Leftrightarrow\frac{8}{AH}=\frac{10}{6}\Leftrightarrow AH=4,8\left(cm\right)\)
\(\Delta AHC\)có: \(\widehat{AHC}=90^o\)
\(\Rightarrow AC^2=AH^2+HC^2\)(định lý Py-ta-go)
hay \(8^2=4,8^2+HC^2\)
\(HC^2=40,96\)
\(HC=6,4\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Tứ giác ADHE là hình chữ nhật vì có 3 góc vuông \(\widehat{A}\)= \(\widehat{D}\)=\(\widehat{E}\)= 900
b) Tứ giác ADHE là hình chữ nhật nên DE = AH
Ap dụng định lý Pytago vào tam giác vuông ABH ta có:
AH2 + BH2 = AB2
\(\Rightarrow\)AH2 = AB2 - BH2
\(\Rightarrow\)AH2 = 102 - 62 = 64
\(\Rightarrow\)AH = \(\sqrt{64}\)= 8
Vì AH = DE nên DE = 8cm
A B C
Vì tam giác ABC cân có AH là đường cao
nên AH đồng thời là đường phân giác
\(\Rightarrow\widehat{HAB}=\widehat{HAC}\)
Ta có \(AH\perp BC\)
Mà HD và HE lần lượt là các đường phân giác
nêngócAHD=AHE
Suy ra tam giác AHD=AHE ( góc cạnh góc) ( bạn tự chứng minh)
nên AD=AE
Chứng minh AE=EH( tự chứng minh)
Mà HE=HD do tam giác AHD VÀ tam giác AHE bằng nhau
nên AE=EH=DH=AD
Vậy AEDH là hình thoi
b) Chứng minh AE=EC
AD=DB
Aps dụng tính chất đường trung bình suy ra dpcm