
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1.
Ta có: \(a^4+b^4\ge\frac{1}{2}\left(a^2+b^2\right)\left(a^2+b^2\right)\ge ab\left(a^2+b^2\right)\)
\(\Rightarrow VT\le\frac{a}{a+bc\left(b^2+c^2\right)}+\frac{b}{b+ca\left(c^2+a^2\right)}+\frac{c}{c+ab\left(a^2+b^2\right)}\)
\(\Rightarrow VT\le\frac{a^2}{a^2+abc\left(b^2+c^2\right)}+\frac{b^2}{b^2+abc\left(a^2+c^2\right)}+\frac{c^2}{c^2+abc\left(a^2+b^2\right)}\)
\(\Rightarrow VT\le\frac{a^2}{a^2+b^2+c^2}+\frac{b^2}{a^2+b^2+c^2}+\frac{c^2}{a^2+b^2+c^2}=1\)
Dấu "=" xảy ra khi \(a=b=c=1\)

\(a+b+c=0\)
⇔\(\left(a+b+c\right)^2=0\)
⇔\(a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
⇔\(2018+2\left(ab+bc+ca\right)=0\)
⇔\(ab+bc+ca=-1009\)
⇔\(\left(ab+bc+ca\right)^2=\left(-1009\right)^2=1009^2\)
⇔\(a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+abc^2+a^2bc\right)=1009^2\)
⇔\(a^2b^2+b^2c^2+c^2a^2+2abc\left(b+c+a\right)=1009^2\)
⇔\(a^2b^2+b^2c^2+c^2a^2=1009^2\)
\(a^2+b^2+c^2=2018\)
⇔\(\left(a^2+b^2+c^2\right)^2=2018^2\)
⇔\(a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=2018^2\)
⇔\(a^4+b^4+c^4+2\cdot1009^2=2018^2\)
⇔\(a^4+b^4+c^4=2018^2-2\cdot1009^2=2036162\)

cho bạn nè: https://olm.vn/hoi-dap/question/108981.html
vào đó mà xem nha...
Từ a+b+c=0 có b+c =-a
Suy ra (b+c)^2 = (-a)^2 hay b^2 + c^2 +2bc = a^2
hay b^2 + c^2 -a^2 = -2bc
Suy ra (b^2 + c^2 - a^2)^2 = (-2bc)^2
<=> b^4 + c^4 + a^4 +2b^2.c^2 - 2a^2.b^2 - 2a^2.c^2 = 4b^2.c^2
<=> a^4 + b^4 + c^4 = 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2
<=> 2(a^4 + b^4 + c^4) =a^4 + b^4 + c^4 + 2a^2.b^2 + 2b^2.c^2 + 2c^2.a^2
<=> 2(a^4 + b^4 + c^4 ) =(a^2 + b^2 + c^2): Đpcm

ta có \(a^2,b^2,c^2\ge0\)
mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)
Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai
còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik
