Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
Từ điều kiện đề bài suy ra:
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}$
$\Leftrightarrow \frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0$
$\Leftrightarrow \frac{a+b}{ab}+\frac{a+b}{c(a+b+c)}=0$
$\Leftrightarrow (a+b)(\frac{1}{ab}+\frac{1}{c(a+b+c)})=0$
$\Leftrightarrow (a+b).\frac{ab+c(a+b+c)}{abc(a+b+c)}=0$
$\Leftrightarrow (a+b).\frac{(c+a)(c+b)}{abc(a+b+c)}=0$
$\Rightarrow (a+b)(c+a)(c+b)=0$
$\Rightarrow (1-c)(1-b)(1-a)=0$
$\Rightarrow 1-c=0$ hoặc $1-b=0$ hoặc $1-a=0$
$\Leftrightarrow a=1$ hoặc $b=1$ hoặc $c=1$ (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn vào đây tham khảo sau đó áp dụng vào bài của bạn nhé: Câu hỏi của Võ Khánh Lê - Toán lớp 0 | Học trực tuyến
![](https://rs.olm.vn/images/avt/0.png?1311)
coi lại dấu " = " xảy ra khi nào dùm t ... , bài lm của m hay mak kl như cái qq ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :\(\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2=\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}-\dfrac{2}{ab}+\dfrac{2}{bc}-\dfrac{2}{ac}\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=\left(\dfrac{1}{a}-\dfrac{1}{b}-\dfrac{1}{c}\right)^2+\dfrac{2}{ab}-\dfrac{2}{bc}+\dfrac{2}{ac}\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=1+2\left(\dfrac{c-a+b}{abc}\right)\)
\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=1+2\left(\dfrac{c-\left(a-b\right)}{abc}\right)\left(1\right)\)
Theo đề ra : a=b+c
\(\Leftrightarrow c=a-b\)
\(\Leftrightarrow c-\left(a-b\right)=0\)
\(\left(1\right)\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=1+2\left(\dfrac{0}{abc}\right)=1\)
\(Hay\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}=1\left(đpcm\right)\)