Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

áp dụng bđt bunhia cốp xki ta có cặp số \(\left(a,2b,c\right)\left(1,\sqrt{2},1\right)\)
\(\left(a^2+2b^2+c^2\right)\left(1+\sqrt{2}+1\right)>=\left(a+b+c\right)^2\)
\(a^2+2b^2+c^2>=\frac{0^2}{2+\sqrt{2}}=0\)
dấu "=" xảy ra khi và chỉ khi \(\frac{a^2}{1}=\frac{b^2}{\sqrt{2}}=\frac{c}{1}\)
vậy min P =0
sorry bạn mình ko tìm đc giá trị lớn nhất mà chỉ tìm đc giá trị nhỏ nhất thôi

\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)
Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

Ta có :\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+b^2+2ab\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
Suy ra \(\frac{2011}{2a^2+2b^2+2008}\le\frac{2011}{\left(a+b\right)^2+2008}=\frac{2011}{4+2008}=\frac{2011}{2012}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

\(P=\frac{\frac{1}{a^2}}{\frac{1}{b}+\frac{1}{c}}+\frac{\frac{1}{b^2}}{\frac{1}{a}+\frac{1}{c}}+\frac{\frac{1}{c^2}}{\frac{1}{a}+\frac{1}{b}}\)
Đặt \(\hept{\begin{cases}x=\frac{1}{a}\\y=\frac{1}{b}\\z=\frac{1}{c}\end{cases}}\Rightarrow xyz=1\Rightarrow P=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(P\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z\Leftrightarrow a=b=c=1\)
Cần cách khác thì nhắn cái

1. a. \(A=8a-8a^2+3=-8\left(a-\frac{1}{2}\right)^2+5\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\forall a\)\(\Rightarrow-8\left(a-\frac{1}{2}\right)^2+5\le5\)
Dấu "=" xảy ra \(\Leftrightarrow-8\left(a-\frac{1}{2}\right)^2=0\Leftrightarrow a-\frac{1}{2}=0\Leftrightarrow a=\frac{1}{2}\)
Vậy Amax = 5 <=> a = 1/2
b. \(B=b-\frac{9b^2}{25}=-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\)
Vì \(\left(b-\frac{25}{18}\right)^2\ge0\forall b\)\(\Rightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2+\frac{25}{36}\le\frac{25}{36}\)
Dấu "=" xảy ra \(\Leftrightarrow-\frac{9}{25}\left(b-\frac{25}{18}\right)^2=0\Leftrightarrow b-\frac{25}{18}=0\Leftrightarrow b=\frac{25}{18}\)
Vậy Bmax = 25/36 <=> b = 25/18
a,\(A=8a-8a^2+3\)
\(=-8\left(a^2-a\right)+3\)
\(=-8\left(a^2-2a\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+3\)
\(=-8\left[\left(a-\frac{1}{2}\right)^2-\frac{1}{4}\right]+3\)
\(=-8\left(a-\frac{1}{2}\right)^2+2+3\)
\(=-8\left(a-\frac{1}{2}\right)^2+5\le5\forall a\)
Dấu"=" xảy ra khi \(\left(a-\frac{1}{2}\right)^2=0\Rightarrow a=\frac{1}{2}\)
Vậy \(Max_A=5\)khi\(a=\frac{1}{2}\)
bài 2:
b,\(D=d^2+10e^2-6de-10e+26\)
\(=d^2-23de+\left(3e\right)^2+e^2-2.5e+5^2+1\)
\(=\left(d-3e\right)^2+\left(e-5\right)^2+1\ge1\forall d,e\)
Dấu"=" xảy ra khi\(\orbr{\begin{cases}\left(d-3e\right)^2=0\\\left(e-5\right)^2=0\end{cases}\Rightarrow\orbr{\begin{cases}d=15\\e=5\end{cases}}}\)
vậy \(D_{min}=1\)khi \(d=15;e=5\)
c,:\(E=4x^4+12x^2+11\)
\(=\left(2x^2\right)^2+2.2x^2.3+3^2+2\)
\(=\left(2x^2+3\right)^2+2\ge2\forall x\)
còn 1 đoạn nx bạn tự lm tiếp,lm giống như D

Dạng này nhìn mệt vãi:(
Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)
Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:
Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:
\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v
Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!
\(\frac{a^2+b^2}{a-2b}=2\Rightarrow a^2+b^2-2a+4b=0\Rightarrow\left(a-1\right)^2+\left(b+2\right)^2=5\)
Đặt \(a-1=x,b+2=y\Rightarrow x^2+y^2=5\), khi đó:
\(P=8a+4b=8\left(x+1\right)+4\left(y-2\right)=8x+4y\)
Áp dụng BĐT Cauchy-schwarz, ta có:
\(P^2=\left(8x+4y\right)^2\le\left(8^2+4^2\right)\left(x^2+y^2\right)=400\)
\(\Rightarrow P\le20\)
Vậy \(MaxP=20\) khi ...