Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn nhân hai biểu thức rồi dùng bất đẳng thức cô-si.suy ra min=4
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Q=2+\left(\frac{a}{b}+\frac{b}{a}\right)\ge2+2\sqrt{\frac{a}{b}.\frac{b}{a}}=4\)
Q min = 4 khi a =b
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có :
\(P=a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\left(a-b\right).b.\frac{1}{b\left(a-b\right)}}=3\)
Vậy m=3
dấu bằng xảy ra khi \(a-b=b=\frac{1}{b\left(a-b\right)}\Leftrightarrow\hept{\begin{cases}a=2\\b=1\end{cases}}\)
vậy \(\hept{\begin{cases}a_1=2\\b_1=1\end{cases}\Rightarrow a_1+b_1+m=2+1+3=6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
P=(x - 1)(x - 3)(x - 4)(x - 6) + 5
P=(x - 1)(x - 6)(x - 3)(x - 4) +5
P=(x^2 - 7x + 6)(x^2 - 7x + 12)+5
Dặt x^2 - 7x + 9 là a, ta có:
P=(a + 3)(a - 3)+5
P=a^2 - 4
=>Pmin= -4
Câu 2:
Q=(a + b)(1/a + 1/b)
Q=a/a + a/b + b/a + b/b
Q=2 + (a/b + b/a)
Gọi a/b là x, ta có:
(x - 1)^2 lớn hơn hoặc băng 0 =>x^2 - 2x + 1 lớn hơn hoặc băng 0
=>x^2 + 1 lớn hơn hoặc băng 2x => x(x + 1/x) lớn hơn hoặc băng 2x
=>x + 1/x lớn hơn hoặc băng 2 =>Min x + 1/x = 2
Có: a/b+b/a = x + 1/x
=>Qmin=2 + 2=4
Mình giải câu 2 hơi dài dòng bạn thông cảm nha. Cảm ơn!
Các bạn giải thích giùm tớ luôn nhé
(a+b)(1/a+1/b)=1+a/b+b/a+1
=2+(a^2+b^2)/(a*b)
vì a^2+b^2>0; a*b>0
=>Qmin=2