Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}\)=\(\frac{c}{d}\)=\(\frac{a+c}{b+d}\)=\(\frac{a-c}{c-d}\)(đpcm)
Vậy .......

ok let me see..
mình làm mẫu ý a nhé bạn tự làm the rest,ok?
đặt:a/b=c/d=k
suy ra a/b=k suy ra a=bk
c/d=k suy ra c=dk
ta có a/a-b=bk/bk-b=bk/b.(k-1)=k/k-1 (1)
c/c-d=dk/dk-d=dk/d.(k-1)=dk/k-1 (2)
Từ (1) và (2) suy ra a/a-b=c/c-d

\(a,\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
có : \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
cứ đặt dạng tổng quát rồi làm tương tự

Nghỉ lâu, giờ vào bài :v
Ta có : a,b,c,d >0
\(\Rightarrow\dfrac{a}{a+b+c}>\dfrac{a}{a+b+c+d}\)
\(\dfrac{b}{b+c+d}>\dfrac{b}{a+b+c+d}\)
\(\dfrac{c}{c+d+a}>\dfrac{c}{c+d+a+b}\)
\(\dfrac{d}{d+a+b}>\dfrac{d}{d+a+b+c}\)
Cộng cả 4 vế , ta được :
\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>\dfrac{a}{a+b+c+d}+\dfrac{b}{a+b+c+d}+\dfrac{c}{a+b+c+d}+\dfrac{d}{a+b+c+d}=\dfrac{a+b+c+d}{a+b+c+d}=1\)Vậy \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}>1\left(1\right)\)
Ta lại có : \(\dfrac{a}{a+b+c}< \dfrac{a}{a+c}\)
\(\dfrac{b}{b+c+d}< \dfrac{b}{b+d}\)
\(\dfrac{c}{c+d+a}< \dfrac{c}{c+a}\)
\(\dfrac{d}{d+a+b}< \dfrac{d}{d+b}\)
Cộng 4 vế , ta được :
\(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< \dfrac{a}{a+c}+\dfrac{b}{b+d}+\dfrac{c}{a+c}+\dfrac{d}{b+d}=\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}\right)+\left(\dfrac{b}{b+d}+\dfrac{d}{b+d}\right)=\left(\dfrac{a+c}{a+c}\right)+\left(\dfrac{b+d}{b+d}\right)=1+1=2\)
Vậy \(\dfrac{a}{a+b+c}+\dfrac{b}{b+c+d}+\dfrac{c}{c+d+a}+\dfrac{d}{d+a+b}< 2\left(2\right)\)
Từ (1) và (2)=> đpcm

Đặt A = a/a+b+c + b/b+c+d + c/c+d+a + d/d+a+b
A > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d + d+a+b+c+d
A > a+b+c+d/a+b+c+d = 1 (1)
Áp dụng a/b < 1 <=> a/b < a+m/b+m (a;b;m > 0) ta có:
A < a+d/a+b+c+d + a+b/a+b+c+d + b+c/a+b+c+d + c+d/a+b+c+d
A < 2.(a+b+c+d)/a+b+c+d
A < 2
Từ (1) và (2) => đpcm

\((a+b+c+d).(a-b-c+d)=(a-b+c-d).(a+b-c-d)\)
\( \Longleftrightarrow (a+d)^2 - (b+c)^2 = (a-d)^2 - (b-c)^2\)
\(\Longleftrightarrow 4ad = 4bc\)
\(\Longleftrightarrow \dfrac{a}{b}=\dfrac{c}{d}\)