
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Theo định lý Bézout thì số dư khi chia đa thức A(x) cho nhị thức x + 1 là: \(r=A\left(-1\right)=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d=0\)
Vậy A(x) chia hết cho x + 1 (đpcm)

Em tham khảo bài có cách làm tương tự ở link dưới đây:
Câu hỏi của Đặng Tuấn Anh - Toán lớp 9 - Học toán với OnlineMath

Cách giải bài này :
Vì Q(x) chia hết cho 5 với mọi x nguyên, nên em chọn 1 số giá trị thích hợp của x để đưa đến các pt nhiều ẩn
Ví dụ Q(0) = d chia hết cho 5; Q(1) = a +b +c +d, vì d chia hết cho 5 => a +b +c chia hết cho 5 (1)
Q(-1) = -a +b -c +d, vì d chia hết cho 5 => -a +b -c chia hết cho 5 (2)
Cộng từ vế (1) và (2) đc 2b chia hết cho 5 => b chia hết cho 5 vì (2,5) = 1
Trừ từng vế (1) và (2) ....
Em tính thêm Q(3) nữa là đc

Bài 3:
a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(1+43\right)=43^{2018}\cdot44⋮11\)

Bài 3:
a: \(n\left(2n-3\right)-2n\left(n+1\right)\)
\(=2n^2-3n-2n^2-2n\)
=-5n chia hết cho 5
b: \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)\)
\(=n^2+4n-n-4-\left(n^2+n-4n-4\right)\)
\(=n^2+3n-4-\left(n^2-3n-4\right)\)
\(=6n⋮6\)

Bạn có nhầm đề không? Nếu chỉ có như vậy thì có vô số đa thức P(x) thỏa mãn với P(x) dạng:
\(P\left(x\right)=x^4+\left(a-3\right)x^3+\left(3-3a\right)x^2+\left(3a-1\right)x-a\)
Với a nguyên bất kì
Bạn có thể thay thử vài giá trị của a và lấy P(x) chia \(\left(x-1\right)^3\) sẽ thấy

Vì \(P\left(x\right)⋮7\forall x\) nên ta có :
\(P\left(0\right)=e⋮7\)
\(P\left(1\right)=a+b+c+d+e⋮7\)
\(P\left(-1\right)=a-b+c-d+e⋮7\)
\(\Rightarrow P\left(1\right)+P\left(-1\right)=\left(2a+2c+2e\right)⋮7\Rightarrow\left(a+c\right)⋮7\)
\(P\left(1\right)-P\left(-1\right)=\left(2b+2d\right)⋮7\Rightarrow\left(b+d\right)⋮7\)
\(P\left(2\right)=16a+8b+4c+2d+e=\left(14a+7b\right)+\left(2a+b+4c+2d+e\right)\)
\(\Rightarrow2a+b+4c+2d⋮7\)
\(P\left(-2\right)=16a-8b+4c-2d+e\)
\(\Rightarrow P\left(2\right)+P\left(-2\right)=32a+8c+2e\)
\(\Rightarrow4a+c⋮7\)
Do \(\left(a+c\right)⋮7\Rightarrow3a⋮7\Rightarrow a⋮7\Rightarrow c⋮7\)
\(P\left(2\right)-P\left(-2\right)=16b+4d\)
\(\Rightarrow\left(b+2d\right)⋮7\Rightarrow d⋮7\Rightarrow b⋮7\)
Vậy nên a, b, c, d, e đều chia hết cho 7.

Theo định lý Bezout ta có:
\(f\left(1\right)=f\left(2\right)=f\left(-3\right)=2;f\left(-2\right)=-10\)
Ta có:
\(f\left(1\right)=a+b+c+d+1=2\)
\(f\left(2\right)=8a+4b+2c+d+16=2\)
\(f\left(-3\right)=-27a+9b-3c+d+81=2\)
\(f\left(-2\right)=-8a+4b-2c+d+16=-10\)
Đến đây bạn dùng Casio fx 580 tìm nghiệm hộ mình nhé !
Thay x = -1 vào A, ta có:
\(A=a.\left(-1\right)^3+b.\left(-1\right)^2+c.\left(-1\right)+d=-a+b-c+d=0\)
\(A\left(-1\right)=0\) nên A chia hết cho x + 1