K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta biến đổi : \(a^2+b^2+ab< 1\)

                   \(=\left(a-b\right)\left(a^2+ab+b^2\right)< a-b\)

                     \(=a^3-b^3< a-b\)

Ta thấy : \(a^3+b^3=a+b\)

=> \(a^3-b^3< a-b\left(đúng\right)\)

Vậy \(a^2+b^2+ab< 1\left(đúng\right)\)

( đpcm )

9 tháng 6 2016

\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

<=>  \(\left(a+b\right)^3=\left(a+b\right)+3ab\left(a+b\right)\)

<=>  \(\left(a+b\right)^3=\left(a+b\right)\left(3ab+1\right)\)

<=>  \(\left(a+b\right)^2=3ab+1\)

<=>  \(a^2+2ab+b^2=3ab+1\)

<=>  \(a^2-ab+b^2=1\)

9 tháng 6 2016

Tiến hay vc ngồi xuống tui lạy

AH
Akai Haruma
Giáo viên
21 tháng 3 2017

Bài 1)

Áp dụng BĐT Bunhiacopxki ta có:

\(1=(a^2+b^2)(m^2+n^2)\geq (am+bn)^2\Rightarrow -1\leq am+bn\leq 1\)

Dấu bằng xảy ra khi \(\frac{a}{m}=\frac{b}{n}\) . Kết hợp với \(a^2+b^2=m^2+n^2=1\)

\(\Rightarrow \) dấu bằng xảy ra khi \(a=\pm m;b=\pm n\)

Bài 2)

Ta thấy:

\((ac-bd)^2\geq 0\Rightarrow a^2c^2+b^2d^2\geq 2abcd\Rightarrow (ac+bd)^2\geq 4abcd\)

\(\Leftrightarrow 4\geq 4cd\rightarrow cd\leq 1\Rightarrow 1-cd\geq 0\) (đpcm)

Dấu bằng xảy ra khi \(ac=bd=\pm 1\)\(cd=1\) ....

Bài 3)

Vế đầu:

\(\Leftrightarrow ab+bc+ac\leq a^2+b^2+c^2\)

Nhân $2$ và chuyển vế \(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\)

BĐT trên luôn đúng nên BĐT đầu tiên cũng đúng.

Vế sau:

\(\Leftrightarrow 2(a^2+b^2+c^2)\geq 2(ab+bc+ac)\)

\(\Leftrightarrow (a-b)^2+(b-c)^2+(c-a)^2\geq 0\) (luôn đúng)

Do đó BĐT sau cũng luôn đúng với mọi số thực $a,b,c$

Dấu bằng xảy ra khi $a=b=c$

21 tháng 3 2017

\(\left\{{}\begin{matrix}m^2+n^2=1\\a^2+b^2=1\end{matrix}\right.\) \(\Leftrightarrow\left(a^2+b^2\right)\left(m^2+n^2\right)=\left(am\right)^2+\left(an\right)^2+\left(bm\right)^2+\left(bn\right)^2=1\)\(\Leftrightarrow\left(am+bn\right)^2-\left[\left(ambn-\left(an\right)^2\right)+\left(ambn-\left(bm\right)^2\right)\right]=1\)\(\Leftrightarrow\left(am+bn\right)^2+\left[an\left(bm-an\right)\right]+\left[bm\left(an-bm\right)\right]=1\)

\(\Leftrightarrow\left(am+bn\right)^2-\left(bm-an\right)\left(an-bm\right)=1\)

\(\Leftrightarrow\left(am+bn\right)^2+\left(an-bm\right)^2=1\\ \)

\(\left(an-bm\right)^2\ge0\forall_{a,b,m,n}\Rightarrow\left(am+bn\right)^2\le1\)

\(\Rightarrow-1\le\left(am+bn\right)\le1\Rightarrow dpcm\)

20 tháng 7 2016

Đề đúng : CMR \(a^2+ab+b^2< 1\)

Ta có : Với mọi a > b > 0 thì \(a^3+b^3>a^3-b^3\)

\(\Rightarrow a-b>a^3-b^3\). Vì a - b > 0 , chia cả hai vế của bất đẳng thức cho (a-b) được : 

\(a^2+ab+b^2< 1\)(đpcm)

19 tháng 3 2019

\(a;b>0\Rightarrow a^3-b^3< a^3+b^3\)

Mà \(a^3+b^3=a-b\)

\(\Rightarrow a^3-b^3< a-b\)

\(\Leftrightarrow\frac{a^3-b^3}{a-b}< \frac{a-b}{a-b}\)(vì a - b = a3 + b> 0 với a;b > 0)

\(\Leftrightarrow a^2+ab+b^2< 1\)

13 tháng 8 2023

giúp mình bạn ơi

 

22 tháng 6 2018

\(a)\) Ta có : 

\(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=49-20=29\)

Vậy \(A=29\)

\(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=7\left(29-10\right)=7.19=133\)

Vậy \(B=133\)

\(b)\) Đặt \(A=-x^2+x-1\) ta có : 

\(-A=x^2-x+1\)

\(-A=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(-A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le\frac{3}{4}< 0\)

Vậy \(A< 0\) với mọi số thực x 

Chúc bạn học tốt ~ 

5 tháng 6 2017

Do \(a,b< 1\Rightarrow a^3< a^2< a< 1;b^3< b^2< b< 1\)Ta có:\(\left(1-a^2\right)\left(1-b\right)>0\Rightarrow1+a^2b>a^2b\)

\(\Rightarrow1+a^2b>a^3+b^3haya^3+b^3< 1+a^2b\)Tương tự \(b^3+c^3< 1+b^2c;c^3+a^3< 1+c^2a\)

\(\Rightarrow2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)