\(a^3-3a^2+5a-17=0 \)

\(b^3-3b^2+5b+17=0\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

Xem lại đề đi!

4 tháng 7 2017

hình như đề đúng mà bạn

Nếu sai bạn sửa hộ mình

4 tháng 7 2017

Đây là lần thứ 2 bn ghi cái đề này? Nhg chưa có lần nào đúng cả!

Sửa đề: \(\left\{{}\begin{matrix}a^3-3a^2+5a-17=0\\b^3-3b^2+5b+11=0\end{matrix}\right.\) (*)

Từ HPT (*) <=> \(\left\{{}\begin{matrix}a^3-3a^2+3a-1+2a-16=0\\b^3-3b^2+3b-1+12=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}\left(a-1\right)^3+2\left(a-8\right)=0\left(1\right)\\\left(b-1\right)^3+2\left(b+6\right)=0\left(2\right)\end{matrix}\right.\)

Cộng (1) với (2) vế theo vế ta có:

\(\left(a-1\right)^3+\left(b-1\right)^3+2\left(a+b-2\right)=0\)

<=> \(\left(a+b-2\right)\left[\left(a-1\right)^2+\left(b-1\right)^2-\left(a-1\right)\left(b-1\right)+2\right]=0\)

\(\left(a-1\right)^2+\left(b-1\right)^2-\left(a-1\right)\left(b-1\right)+2>0\)

=> \(a+b-2=0\)

=> \(a+b=2\)

N
4 tháng 7 2017

\(a^2hay3a^2\)?

cậu kiểm tra thử

thường dạng này phải đối xứng nhau về hệ số cơ

NV
11 tháng 2 2020

\(a^3-3a^2+3a-1+2a-16=0\Leftrightarrow\left(a-1\right)^3+2a-16=0\)

Tương tự: \(\left(b-1\right)^3+2b+12=0\)

Cộng vế với vế:

\(\left(a-1\right)^3+\left(b-1\right)^3+2\left(a+b-2\right)=0\)

\(\Leftrightarrow\left(a+b-2\right)\left[\left(a-1\right)^2-\left(a-1\right)\left(b-1\right)+\left(b-1\right)^2+2\right]=0\)

\(\Leftrightarrow a+b-2=0\)

16 tháng 7 2015

http://diendan.hocmai.vn/showthread.php?t=287459

1 tháng 8 2019

a+b=2

muốn giải nhắn mình BnoHi facebook

3 tháng 8 2016

Xét phương trình 

\(x^3-3x^2+5x-17=0\Leftrightarrow\left(x-1\right)^3+2\left(x-1\right)-14=0\text{ }\left(1\right)\)

Chứng minh (1) có 1 nghiệm duy nhất: 

+Phương trình bậc ba luôn có tối thiểu 1 nghiệm

+Giả sử (1) có 1 nghiệm là \(x=a\)

Nếu \(x>a\) thì \(x-1>a-1\Rightarrow\hept{\begin{cases}\left(x-1\right)^3>\left(a-1\right)^3\\x-1>a-1\end{cases}}\)

\(\Rightarrow\left(x-1\right)^3+2\left(x-1\right)-14>\left(a-1\right)^3+2\left(a-1\right)-14=0\) => (1) vô nghiệm

Nếu \(x< a\), tương tự, (1) cũng vô nghiệm.

Vậy (1) có duy nhất 1 nghiệm 

Xét phương trình 

\(y^3-3y^2+5y+11=0\text{ }\left(2\right)\)\(\Leftrightarrow\left(2-y\right)^3-3\left(2-y\right)^2+5\left(2-y\right)-17=0\)

Đây chính là phương trình (1) nhưng với biến \(2-y\) nên có nghiệm \(2-y=a\); mà theo đề bài, nghiệm của (2) là \(y=b\)

Nên \(2-b=a\)

\(\Rightarrow a+b=2\)

16 tháng 8 2018

Xét phương trình 

x3−3x2+5x−17=0⇔(x−1)3+2(x−1)−14=0 (1)

Chứng minh (1) có 1 nghiệm duy nhất: 

+Phương trình bậc ba luôn có tối thiểu 1 nghiệm

+Giả sử (1) có 1 nghiệm là x=a

Nếu x>a thì x−1>a−1⇒{

(x−1)3>(a−1)3
x−1>a−1

⇒(x−1)3+2(x−1)−14>(a−1)3+2(a−1)−14=0 => (1) vô nghiệm

Nếu x<a, tương tự, (1) cũng vô nghiệm.

Vậy (1) có duy nhất 1 nghiệm 

Xét phương trình 

y3−3y2+5y+11=0 (2)⇔(2−y)3−3(2−y)2+5(2−y)−17=0

Đây chính là phương trình (1) nhưng với biến 2−y nên có nghiệm 2−y=a; mà theo đề bài, nghiệm của (2) là y=b

Nên 2−b=a

⇒a+b=2

13 tháng 2 2016

moi hok lop 6

15 tháng 11 2018

Minh bi nham dau bai, chi co 1 thua so \(\dfrac{2}{x}\) thoi nhe!

9 tháng 5 2018

 Đề bài bị trái dấu bạn nhé

CM \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\) 

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\) 

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3ab^2\) 

\(\Leftrightarrow b^3+a^3-ab^2-ba^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)đúng với mọi a, b>0 

CMTT các hạng tử khác 

\(\Rightarrow P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ac+3a^2}\le2b-a+2c-b+2a-c=a+b+c\)

9 tháng 5 2018

vậy đề sai rồi chứ mình giải mãi chả ra mà toàn ngược dấu nên mình tưởng mình sai 

4 tháng 7 2019

b1. a)

Gỉa sử căn bậc 2 + căn bậc 3 lớn hơn hoặc bằng căn bậc 10

=> ( căn bậc 2 + căn bậc 3 )2 lớn hơn hoặc bằng căn bậc 102

2+ 2 * căn bậc 3 + 3 lớn hơn hoặc bằng 10

5 + 2 căn 6 lớn hơn hoặc bằng 10

2 căn 6 lớn hơn hoặc bằng 5

( 2 căn 6 )2 lớn hơn hoặc bằng 52

4 * 6 lớn hơn 25

24 lớn hơn hoặc bằng 25 (sai)

Vậy căn bậc 2 + căn bậc 3 nhỏ hơn căn bậc 10