K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 3 2017

\(a^2+b^2+c^2-ab-bc-ac=0\)

<=>\(2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

<=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\)

nên \(\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow a=b=c\)

8 tháng 3 2017

a^2+b^2+c^2= ab + bc + ca

2( a^2 + b^2 + c^2) = 2(ab+bc+ca)

Chuyển vế => a^2 + b^2 + c^2 + (a+b+c)^2 =0

Một số bình phương lên lớn hơn hoặc bằng 0

=> Dấu = xảy ra <=> a=b=c=0