Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
TRần Lê Mai Hoa bạn lên xem chỗ bạn Ha Quang Do ấy mình có trả lời rồi
A, Để aaa chia hết cho 3 thì a+ a+ a phải chia hết cho 3
Suy ra: a x 3 chia hết cho 3 ( có số 3 ở phép nhân)
B, Dựa theo bài trên: a x 3 sẽ chia hết cho 9 thì ta Ví Dụ được 1 giái trị sau:
9 x 1 = 9 suy ra a = 3 ( 3 x 3= 9) Sau đó cứ lấy 9 x 2; 9 x3 ; 9 x 4; 9 x 5 v...v....v...v...v
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: A= 12+15+21+x
A= 48+x
+Để A chia hết cho <=> 48+x chia hết cho 3
mà 48 chia hết cho 3 => x phải chia hết cho 3
+ Để A ko chia hết cho 3 <=> 48 +x ko chia hết cho 3
mà 48 chia hết cho 3 => x ko chia hết cho 3
ta thấy : 12\(⋮3\); \(15⋮3\);\(21⋮3\)
TH1 : để A\(⋮3\)thì x\(⋮3\)
=> \(x\in B\left(3\right)\)
TH2: để Ako chia hết 3 thì
x phải ko chia hết cho 3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Vì ƯCLN(a,b)=42 nên a=42.m và b=42.n với ƯCLN(m,n)=1
Mặt khác a+b=252 nên 42.m+42.n=252 hay m+n=6
Do m và n nguyên tố cùng nhau nên ta được như sau:
- Nếu m=1 thì a=42 và n=5 thì b=210
- Nếu m=5 thì a=210 và n=1 thì b=42
b) x+3 là ước của 12= {1;2;3;4;6} suy ra x={0;1;3}
c) Giả sử ƯCLN(2n+1; 6n+5)=d khi đó (2n+1) chia hết cho d và (6n+5) chia hết cho d
3(2n+1) chia hết cho d và (6n+5) chia hết cho d
(6n+5) - (6n+3) chia hết cho d syt ra 2 chia hết cho d suy ra d=1; d=2
Nhưng do 2n+1 là số lẻ nên d khác 2. vậy d=1 suy ra ƯCLN(2n+1; 6n+5)=1
Như vậy 2n+1 và 6n+5 là 2 nguyên tố cùng nhau với bất kỳ n thuộc N (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)Ta có:\(2^{60}=\left(2^3\right)^{20}=8^{20}\)
\(3^{40}=\left(3^2\right)^{20}=9^{20}\)
Vì \(8^{20}< 9^{20}\Rightarrow2^{60}< 3^{40}\)
2)Gọi d là ƯCLN(n+3,2n+5)(d\(\in N\)*)
Ta có:\(n+3⋮d,2n+5⋮d\)
\(\Rightarrow2n+6⋮d,2n+5⋮d\)
\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vì ƯCLN(n+3,2n+5)=1\(\RightarrowƯC\left(n+3,2n+5\right)=\left\{1,-1\right\}\)
3)\(A=5+5^2+5^3+5^4+...+5^{98}+5^{99}\)(có 99 số hạng)
\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{97}+5^{98}+5^{99}\right)\)(có 33 nhóm)
\(A=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+...+5^{97}\left(1+5+5^2\right)\)
\(A=5\cdot31+5^4\cdot31+...+5^{97}\cdot31\)
\(A=31\left(5+5^4+...+5^{97}\right)⋮31\left(đpcm\right)\)
6)Đặt \(A=2^1+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(A=2^{101}-2\)
\(\Rightarrow2^1+2^2+2^3+...+2^{100}-2^{101}=2^{101}-2-2^{101}=-2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\frac{3n+2}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3+\frac{5}{n-1}\)
để A có giá trị nguyên thì 5 phải chia hết cho n-1 hay n-1 là ước của 5
Ư(5)={5,1,-1,-5}
\(\Rightarrow\)n={6,2,0,-4}
gọi số cần tìm là A,Ta có: A+2CHIA HẾT CHO 3,4,5,6 HAY A+2 là bội chung của 3,4,5,6
BCNN(3,4,5,6)=60
\(\Rightarrow A+2=60.n\Rightarrow n=1,2,3,4,.... \)
lần lượt thử các số n.
Ta thấy n=7 thì A=418 chia hết cho 11
vậy số nhỏ nhất là 418
a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM
b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.
Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9
a) A = n3 +3n2 + 2n
A = n3 + n2 + 2n2 + 2n
A = n2.( n+1) + 2n.(n+1)
A = (n+1).(n2+2n)
A = (n+1).n.(n+2)
A = n.(n+1).(n+2)
Vì n.(n+1).(n+2) là tích 3 số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3
=> A chia hết cho 3
Chứng tỏ A chia hết cho 3 với mọi n nguyên
b) Ta có: 15 = 3.5
Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5
Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5
Mặt khác n<10 nên n<n+1<n+2<12
Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11
Vậy các giá trị của n tìm được là: 3;4;5;8;9