Cho a  N, chứng tỏ rằng a
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2021

=1811.39267016hoac 1811du75 
chuc ban hoc tot

nho k cho mk nho

28 tháng 12 2021

số chia hết cho 5 có tận cùng là 5 hoặc 0 
 mà trong tổng có 1 thừa số là 2021 có tận cùng là 1 nên cả tổng sẽ không chia hết cho 5

14 tháng 2 2019

Phần a có 2 cách nha bạn:

-C1:Ta thấy tổng các chữ số của ababab là :a+b+a+b+a+b =3a+3b=3x(a+b) chia hết cho 3

Vậy ababab chia hết cho 3

-C2:ta có :ababab=a x100000+b x10000+a x1000+b x100+a x10+b

                             =a x101010+b x10101

                             =3x(a x33670+b x3367) chia hết cho 3

Vậy ababab chia hết cho 3

4 tháng 2 2021

a/ \(\overline{ababab}=\overline{10101}.\overline{ab}\) ta có \(\overline{10101}⋮3\Rightarrow\overline{ababab}⋮3\) nên \(\overline{ababab}\) là bội của 3

b/ gọi d là ước chung của tử và mẫu nên

\(12n+1⋮d\Rightarrow5\left(12n+1\right)=60n+5⋮d\)

\(30n+2⋮d\Rightarrow2\left(30n+2\right)=60n+4⋮d\)

\(\Rightarrow60n+5-60n-4=1⋮d\Rightarrow d=1\)

Tử và mẫu chỉ có ước chung là 1 nên phân số là tối giản

c/

\(S=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}.33⋮33\)

4 tháng 2 2021

b) Gọi d= ƯCLN(12n+1;30n+2)

=>12n+1chia hết cho d; 30n+2 chia hết cho d

=>5(12n+1)chia hết cho d; 2(30n+2) chia hết cho d

=> 5(12n+1)-2(30n+2) chia hết cho d

=> (60n+5)-(60n+4) chia hết cho d

=> 60n=5-60n-4 chia hết cho d

=>1 chia hết cho d

=> d = 1

=>(12n+1;30n+2) chia hết cho d

=> 12n+1/30n+2 là phân số tối giản

 c) có S= 165+215

            =(24)5+215

            =220+215

            =215+220-15+215

            =215.220-15+215

              =215.(220-15+1)

            =215.(25+1)

            =215.(32+1)

           =215.33

mà 33 chia hết cho 33

=>215.33 chia hết cho 33

=>165+215 chia hết cho 33

=> S chia hết cho 33 (ĐPCM)

31 tháng 12 2021

\(a^2+a+2021=a\left(a+1\right)+2021\)

a và (a+1) là hai số TN liên tiếp => tích a(a+1) có chữ số tận cùng = {0;2;6}

=> a(a+1)+2021 có chữ số tận cùng = {1;3;7}\(\Rightarrow a^2+a+2021\) không chia hết cho 5 nên nó không phải bội của 5

A= 1+2+22+23+.......+298+299     

A= (1+2)+(22+23)+.......+(298+299 )

A=3+22.(1+2)+...+298.(1+2)

A=   3+22.3+...+298.3 

A=3.(22+...+298)

Vid 3 chia hết cho 3 nên A chia hết cho 3

Đơn giản như đang giỡn

HT

28 tháng 10 2021

giúp mình với

27 tháng 3 2022

`Answer:`

\(S=5+5^2+5^3+5^4+5^5+5^6+...+5^{2004}\)

\(=\left(5+5^2+5^3+5^4+5^5+5^6\right)+\left(5^7+5^8+5^9+5^{10}+5^{11}+5^{12}\right)+...\left(5^{1999}+5^{2000}+5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)

\(=5.\left(1+5+5^2+5^3+5^4+5^5\right)+5^7.\left(1+5+5^2+5^3+5^4+5^5\right)+...+5^{1999}.\left(1+5+5^2+5^3+5^4+5^5\right)\)

\(=\left(1+5+5^2+5^3+5^4+5^5\right).\left(5+5^7+...+5^{1999}\right)\)

\(=3906.\left(5+5^7+...+5^{1999}\right)⋮126\)

\(S=5+5^2+5^3+5^4+5^5+5^6+...+5^{2004}\)

\(=\left(5+5^2+5^3+5^4\right)+5^4.\left(5+5^2+5^3+5^4\right)+...+5^{2000}.\left(5+5^2+5^3+5^4\right)\)

\(=\left(5+5^2+5^3+5^4\right).\left(1+5^4+...+5^{2000}\right)\)

\(=780.\left(1+5^4+...+5^{2000}\right)⋮65\)

23 tháng 7 2017

a) Ta có : ababab = 10000 ab + 100 ab + ab = ( 10000+100+1 ) ab = 10101 ab

Vì 10101 \(⋮\)3 => 10101 ab \(⋮\)3

                     => ababab \(⋮\)

                     => ababab là bội của 3 ( đpcm )

b) Ta có : \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.\left(2^5+1\right)=2^{15}.33\)

Vì \(33⋮33\)và \(2^{15}\in Z\)=> \(16^5+2^{15}⋮33\)( đpcm )

Vậy bài toán được chứng minh !

                 Chúc mng vui vẻ ❤️❤️❤️

23 tháng 7 2017

Ta có :
ababab = ab . 10101

Do 10101 chia hết cho 3 

=> ab . 10101 chia hết cho 3

hay ababab chia hết cho 3

ababab chia hết cho 3 nên ababab thuộc B ( 3 )

b ) Ta có :

165 + 215

( 24 )5 + 215 

= 220 +  215 

= 215 . 25 + 215 

= 215 . ( 25 + 1 ) 

= 215 . 33 chia hết cho 33

Vậy 165 + 215 chia hết cho 33

28 tháng 12 2021

mọi người làm cho mik bài 2 trước cũng được

28 tháng 12 2021

Bài 1 trước nhé