Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

không biết khó quá mà bạn biết bài này không giúp mình với mình cần gấp nha nick mình là Quách Ngọc Minh Xuân

\(\frac{B}{A}=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)
\(=\frac{\left(\frac{2011}{2}+1\right)+\left(\frac{2010}{3}+1\right)+...+\left(\frac{1}{2012}+1\right)+1}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)
\(=\frac{\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+....+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}}\)
\(=\frac{2013\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}=2013\)

\(A=2\cdot\left(\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{2017^2}\right)< 2\cdot\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}\right)\)
Đặt \(M=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}=\left(1+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
\(\Rightarrow M=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)
\(\Rightarrow M=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}< \frac{1}{1009}+\frac{1}{1009}+...+\frac{1}{1009}\)(1008 số hạng )
hay\(M< \frac{1008}{1009}\Rightarrow A< 2\cdot\frac{1008}{1009}=\frac{504}{1009}\left(ĐPCM\right)\)

=\(\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)
=\(1-\frac{1}{10^2}\)
Mà \(1-\frac{1}{10^2}\)\(< 1\)
=>Tổng đó bé hơn \(1\)
Proed_Game_Toàn không biết thì đừng Spam.
Giải:
\(A=\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+\frac{2}{9^2}+...+\frac{2}{2011^2}\)
\(2A=2.\left(\frac{2}{3^2}+\frac{2}{5^2}+\frac{2}{7^2}+\frac{2}{9^9}+...+\frac{2}{2011^2}\right)\)
\(2A=\left(1-\frac{2}{3^2}\right)+\left(1-\frac{2}{5^2}\right)+\left(1-\frac{2}{7^2}\right)+\left(1-\frac{2}{9^2}\right)+...+\left(1-\frac{2}{2011^2}\right)\)
...
P/s: Tới đây là dễ rùi, kết quả tự tình và tự CM nhé!
Câu trả lời hay nhất: P = x⁴ + 2x³ + 3x² + 2x + 1
. .= (x⁴ + x³ + x²) + (x³ + x² + x) + (x² + x + 1)
. .= x²(x² + x + 1) + x(x² + x + 1) + (x² + x + 1)
. .= (x² + x + 1)(x² + x + 1)
. .= (x² + x + 1)²
P nhỏ nhất khi x² + x + 1 nhỏ nhất
x² + x + 1 = (x + 1/2)² + 3/4 ≥ 3/4;
đẳng thức xảy ra khi x = -1/2
Do đó
P ≥ (3/4)²
P ≥ 9/16
GTNN của P là 9/16 và điều này xảy ra khi x = -1/2