Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn đọc tự vẽ hình.
Xét tam giác \(AA'C\)có \(M,B,B'\)lần lượt nằm trên các cạnh \(AA',A'C,CA\)và \(M,B,B'\)thẳng hàng, do đó theo định lí Menelaus ta có:
\(\frac{MA}{MA'}.\frac{BA'}{BC}.\frac{B'C}{B'A}=1\Leftrightarrow\frac{MA}{MA'}.\frac{BA'}{BC}=\frac{B'A}{B'C}\)
Tương tự khi xét tam giác \(AA'B\)với các điểm \(M,B,B'\)ta cũng có:
\(\frac{MA}{MA'}.\frac{CA'}{CB}=\frac{C'A}{C'B}\)
Suy ra \(\frac{B'A}{B'C}+\frac{C'A}{C'B}=\frac{MA}{MA'}\left(\frac{BA'}{BC}+\frac{CA'}{CB}\right)=\frac{MA}{MA'}.\frac{BC}{BC}=\frac{MA}{MA'}\).
Ta có đpcm.
A' M B C C' B' D A E
\(\frac{AM}{A'M}=\frac{AE}{BA'}=\frac{AD}{A'C}=\frac{AD+AE}{A'C+A'B}=\frac{DE}{BC}\)
\(\Delta CBB'\)có AE // BC , nên \(\frac{AB'}{B'C}=\frac{AE}{BC}\)( hệ quả của định lí Ta-lét);
\(\Delta BCC'\)có DA // BC , nên \(\frac{AC'}{BC'}=\frac{DA}{BC}\)( hệ quả của định lí Ta-lét).
Ta có : \(\frac{AB'}{CB'}=\frac{AC'}{BC'}=\frac{AE}{BC}+\frac{DA}{BC}=\frac{DE}{BC}\)
Do đó : \(\frac{AM}{A'M}=\frac{AB'}{CB'}+\frac{AC'}{BC'}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
A B C M N P
a) Xét tam giác BMC và tam giác MCN có:
Chung đường cao hạ từ M xuống BN, 2 đáy BC=CN
\(\Rightarrow S_{BMC}=S_{MCN}\)
\(\Rightarrow S_{BMN}=2S_{BMC}\)(1)
Xét tam giác ABC và tam giác BMC có:
Chung đường cao hạ từ C xuống đường thẳng AM , 2 đáy AB=BM
\(\Rightarrow S_{ABC}=S_{BMC}\)(2)
Từ (1) và (2) \(\Rightarrow S_{BMN}=2S_{ABC}\)
CMTT \(S_{APM}=2S_{ABC};S_{PCN}=2S_{ABC}\)
\(\Rightarrow S_{PMN}=S_{PCN}+S_{APM}+S_{BMN}+S_{ABC}\)
\(=7S_{ABC}\left(đpcm\right)\)
Bài 3:
Áp dụng tính chất 2 tam giác có chung đường cao thì tỉ số diện tích bằng tỉ số 2 đáy tương ứng với đường cao đó, ta có:
\(BP=\frac{1}{3}BC\Rightarrow S_{ABP}=\frac{1}{3}S_{ABC}\)
Tương tự có \(\hept{\begin{cases}S_{BMC}=\frac{1}{3}S_{ABC}\\S_{CAN}=\frac{1}{3}S_{ABC}\end{cases}}\)
\(\Rightarrow S_{ABP}+S_{BMC}+S_{CAN}=S_{ABC}\)
\(\Rightarrow S_{ANE}+S_{BNEF}+S_{BFP}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{CMI}+S_{MIEA}+S_{ANE}\)
\(=S_{ANE}+S_{BNEF}+S_{CPFI}+S_{BFP}+S_{CPFI}+S_{CMI}+S_{MIEA}+S_{EFI}\)
\(\Rightarrow S_{ANE}+S_{BFP}+S_{CMI}=S_{EFI}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A B D C F E
Vì DF//AB (gt) . Áp dụng định lý Talet ta có : \(\frac{AF}{AC}=\frac{BD}{BC}\)(1)
Vì DE//AC (gt) . Áp dụng định lý Talet ta có : \(\frac{AE}{AB}=\frac{CD}{BC}\)(2)
Từ (1);(2) \(\Rightarrow\frac{AE}{AB}+\frac{AF}{AC}=\frac{BD}{BC}+\frac{CD}{BC}=\frac{BD+CD}{BC}=\frac{BC}{BC}=1\)(Đpcm)