Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Ta có: A = 5 + 5^2 + 5^3 +....+ 5^100
⇒A = 5 + 5^2 + 5^3 + 5^4 + ... + 5^99 + 5^100 ⇒A = 5^1 + 5 + 5^3 . 1 + 5 + ... + 5 ^9 . 1 + 5
⇒A = 5.6 + 5 3 .6 + ... + 5^99 .6
A = 6. 5 + 5 3 + ... + 5^99 chia hết cho 6. Vì A chia hết cho 6 nên A là hợp số
b,A không hải số chính phương
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
![](https://rs.olm.vn/images/avt/0.png?1311)
a. Ta có: A = 5 + 52 + 53 +....+ 5100
\(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)
\(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có : A=5+5^2+...+5^100=......5 chia hết cho 5
A=5+5^2+...+5^100>5
suy ra: A là hợp số
b) Ta có :
5 chia hết cho 5
5^2 chia hết cho 5
....................................
5^100 chia hết cho 5
=> A chia hết cho 5, 5 là số nguyên tố (1)
Mà : 5 ko chia hết cho 5^2
5^2 chia hết cho 5^2
.............................................
5^100 chia hết cho 5^2
=> A ko chia hết cho 5^2 (2)
Từ (1) + (2) => A ko là số chính phương
![](https://rs.olm.vn/images/avt/0.png?1311)
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
a.
A = 5 + 5^2 + 5^3 +...+5^100
5A = 5^2 + 5^3 +...+5^101
4A = [5^2 + 5^3+...+5^101] - [5 + 5^2 +5^3+...+5^100]
A = \(\frac{5^{101}-5}{4}\)
b, Vì 5, 5^2,..., 5^100 đều là lũy thừa của 5 nên sẽ bằng 5[5n] chia hết cho 5
=> A là hợp số
c,
A = 5 + 5^2 + 5^3 +... + 5^100
A = [5 + 5^2] + [5^3 + 5^4] + ... + [5^99 + 5^100]
A = 30 + 5^2[5 + 5^2] + ... + 5^98[5 + 5^2]
A = 30 + 5^2.30 + ... + 5^98 . 30
=> A chia hết cho 30
d.
Vì A = \(\frac{5^{101}-5}{4}\)[cm trên]
Mà theo quy tắc thì 5101 có chữ số tận cùng là 25 [vì 5n = ...25 với mọi n E N*]
=> 5101-5 = ...20 [chỉ có thể là số có chữ số tận cùng là 0 bình phương lên]
Mà một số có chữ số tận cùng là 0 khi bình phương lên sẽ có ít nhất 2 chữ số 0 ở tận cùng
Mà A chỉ có 4 chữ số 0
=> A không phải số chính phương
Ủng hộ mik nếu thấy OK Nha mấy bạn >..<
[cm trên] là j vậy?