![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
giả sử A là số chính phương
Ta có: \(A=3+3^2+3^3+...+3^{2004}\)
\(=3.\left(1+3+3^2+....+3^{2003}\right)\)
=> A chia hết cho 3
=> A chia hết cho 32 (vì A là số chính phương)
=> 1 + 3 + 32 + ... + 32003 chia hết cho 3 (Vô lí)
=> A không phải là số chính phương
P/s: Không biết đúng không, làm đại
Ta có : \(3⋮3,3^2⋮3,3^3⋮3,.....,3^{2004}⋮3\)
=> A\(⋮\)3 (1)
ta lại có : \(3^2⋮3^2,3^3⋮3^2,....,3^{2004}⋮3^2\) mà 3 không chia hết cho \(3^2\)
=> A không chia hết cho 3^2 (2)
từ (1) , (2) => A không là số chính phương
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử A là số chính phương
A = 3 + 32 + 33 +...+ 32004
A = 3(1 + 3 + 32 +...+ 32004)
=> A chia hết cho 3
=> A chia hết cho 32 (Vì A là số chính phương)
=> 1 + 3 + 32 +...+ 32004 chia hết cho 3 (Điều này rõ ràng vô lí)
Vậy A không là số chính phương
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: A = 5 + 52 + 53 +....+ 5100
⇒�=(5+52)+(53+54)+...+(599+5100)⇒A=(5+52)+(53+54)+...+(599+5100)
⇒�=5(1+5)+53.(1+5)+...+599.(1+5)⇒A=5(1+5)+53.(1+5)+...+599.(1+5)
⇒�=5.6+53.6+...+599.6⇒A=5.6+53.6+...+599.6
�=6.(5+53+...+599)A=6.(5+53+...+599) chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Ta có
A = 3 + 32 + ... + 32004.
=> A = 3 ( 1+ 3 + 32 ) + 34 ( 1+ 3 + 32 ) + ... + 32001 ( 1+ 3 + 32 )
=> A = 3 . 13 + 34 . 13 + ... + 32001 . 13
=> A = 13 ( 3 + 34 + ... + 32001) chia hết cho 13.
Lại có :
A = 3 + 32 + ... + 32004.
=> A = ( 3 + 33) + (32 + 34) + ... + ( 32002 + 32004)
=> A = 3 ( 1+ 9) + 32 ( 1+ 9) + ... + 32003 ( 1+ 9)
=> A = 10 ( 3 + 32 + ... + 3 2003) chia hết cho 10.
Vậy A vừa chia hết cho 13 vừa chia hết cho 10 mà ( 13;10) = 1
=> A chia hết cho 130.
A=3+32+33+......+32004
3A=32+33+......+32005
3A-A= ( 32+33+......+32005 ) - ( 3+32+33+......+32004 )
2A=32005-3
A=\(\frac{3^{2005}-3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2^2.3^4.5^2=2^2.9^2.5^2=\left(2.9.5\right)^2=90^2\) là bình phương của số 90
b) \(2^2.3^2.5^{15}=2^2.3^2.5^{14}.5=2^2.3^2.78125^2.5=\left(2.3.78125\right)^2.5\)
Vì 5 \(\ne\) (2. 3. 78125) nên (2.3.78125)2.5 không thể là bình phương của một số
a) \(2^2.3^4.5^2=2^2.9^2.5^2\)
Ta có : \(2^2.2^9.5^2\) đều là bình phương của nhiều số.
Mà : \(2^2.9^2.5^2\) = 8100 = \(90^2\)
b) \(2^2.3^2.5^{15}\) không phải là bình phương của một số do 515 không phải bình phương của số nào
A = 3 + 32 + 33 +...+ 32004
A = 3(1 + 3 + 32+...+ 32004)
=> A chia hết cho 3
Vậy A không là số nguyên tố
co phai vi ?