Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
mik cũng đang cần giải bài này ai piết thì giải giùm vs nha!
càng nhanh càng tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+..............+\frac{1}{99^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+................+\frac{1}{98.99}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+............+\frac{1}{98}-\frac{1}{99}\)
\(=1-\frac{1}{99}=\frac{98}{99}< 1\)
\(A>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.............+\frac{1}{99.100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...............+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
Vậy \(\frac{49}{100}< A< 1\)
\(4A=4+4^2+...+4^{100}\)
\(A=1+4+4^2+..+4^{99}\)
\(\Rightarrow3A=4A-A=4^{100}-1\)
\(\Rightarrow3A< 4^{100}\)
\(\Rightarrow\frac{3A}{B}< 1\Rightarrow\frac{A}{B}< \frac{1}{3}\)