K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

24 tháng 11 2018
Trong mặt phẳng cho 2009 điểm bất kì sao cho 3 điểm bất kì trong chúng là 3 đỉnh của một tam giác có diện tích không lớn hơn 1. Chứng minh rằng tất cả những điểm đã cho nằm trong một tam giác có diện tích không lớn hơn 4
sửa lại đề nha

LN
10 tháng 9
Tứ giác MONB có OM//BC nên là hình thang. Hình thang này có MBN=ONB(=ABC) nên là hình thang.
Chứng minh tương tự ta được các tứ giác ONCP;OMAP cũng là hình thang cân.
Suy ra: MN=OB;NP=OC,MP=OA.
Do đó △MNP là tam giác đều ⇔MN=MP=NP
⇔OB=OC=OA ⇔O là giao điểm của ba đường trung trực của △ABC.
Trong tam giác đều, giao điểm của ba đường trung trực cũng là giao điểm của ba đường cao, ba đường trung tuyển.
Chứng minh tương tự ta được các tứ giác ONCP;OMAP cũng là hình thang cân.
Suy ra: MN=OB;NP=OC,MP=OA.
Do đó △MNP là tam giác đều ⇔MN=MP=NP
⇔OB=OC=OA ⇔O là giao điểm của ba đường trung trực của △ABC.
Trong tam giác đều, giao điểm của ba đường trung trực cũng là giao điểm của ba đường cao, ba đường trung tuyển.