\(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

Bình phương 2 vế và biến đổi tương đương là ra

2 tháng 12 2019

Áp dụng BĐT Bunhiacopski

ta có \(ac+bd\le\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\)

mà \(\left(a+c\right)^2+\left(b+d\right)^2=a^2+b^2+2\left(ac+bd\right)+c^2+d^2\)

\(\le\left(a^2+b^2\right)+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}+c^2+d^2\)

\(=\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)

Lúc đó \(\left(a+c\right)^2+\left(b+d\right)^2\)\(\le\left(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\right)^2\)

\(\Rightarrow\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\le\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)