Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

BƯỚC 1: Viết lại số AB
Số AB gồm 2 chữ số → viết lại theo công thức:
AB=10×A+BAB = 10 × A + BAB=10×A+B
Ví dụ: Nếu A = 2, B = 3 thì AB = 23 = 10 × 2 + 3
🔷 BƯỚC 2: Phân tích biểu thức đề bài
Biểu thức là:
(6A−2B)(3A+12B)(6A - 2B)(3A + 12B)(6A−2B)(3A+12B)
→ Đây là tích của 2 biểu thức.
Một điều quan trọng:
Nếu tích của 2 số chia hết cho 13 → thì ít nhất một trong 2 số đó phải chia hết cho 13.
Vậy ta sẽ xét 2 trường hợp:
🔹 Trường hợp 1:
Giả sử 6A−2B6A - 2B6A−2B chia hết cho 13
Ta chia cả hai số cho 2 để đơn giản hơn:
6A−2B=2×(3A−B)⇒3A−B chia heˆˊt cho 136A - 2B = 2 × (3A - B) → 3A - B { chia hết cho 13}6A−2B=2×(3A−B)⇒3A−B chia heˆˊt cho 13
Tức là:
3A=B3A = B3A=B
Ví dụ:
Nếu A = 2 → B = 6
Nếu A = 3 → B = 9
Nếu A = 4 → B = 12 ❌ (sai, vì B phải là 1 chữ số)
Thử vài trường hợp:
AB = 3AAB = 10A + B
1 | 3 | 13 ✅ |
2 | 6 | 26 ✅ |
3 | 9 | 39 ✅ |
→ Các số AB đều chia hết cho 13! 🎉
🔹 Trường hợp 2:
Giả sử 3A+12B3A + 12B3A+12B chia hết cho 13
Ta thử đơn giản biểu thức này một chút.
Nhận xét: 12 gần bằng 13 → ta viết:
12B=−B+13B⇒3A+12B=3A−B+13B12B = -B + 13B 3A + 12B = 3A - B + 13B12B=−B+13B⇒3A+12B=3A−B+13B
Vì 13B chắc chắn chia hết cho 13, ta chỉ cần quan tâm:
3A−B chia hết cho 13⇒Giong hệt như trường hợp 1!⇒B=3A3A - B →{ chia hết cho 13}→ {Giống hệt như trường hợp 1!} → B = 3A3A−B chia hết cho 13⇒Giong hệt như trường hợp 1!⇒B=3A
→ Và kết quả cũng vậy: AB chia hết cho 13.
KẾT LUẬN:
Vì biểu thức đề cho chia hết cho 13 → dẫn đến B = 3A
→ Suy ra AB = 10A + B = 10A + 3A = 13A
→ AB chia hết cho 13!
MÌNH TÊN ĐỖ TẤN DŨNG 6D

a) 2x+3y chia hết cho 17 => 4(2x+3y) chia hết cho 17
=> 8x+12y chia hết cho 17
Ta có : 8x+12y+9x+5y=17x+17y=17(x+y) chia hết cho 17
b) a+4b chia hết cho 13 => 3(a+4b) chia hết cho 13 => 3a+12b chia hết cho 13
=> (3a+12b)+(10a+b)=13a+13b=13(a+b) chia hết cho 13
c) 3a+2b chia hết cho 17 => 8(3a+2b) chia hết cho 17 => 24a+16b chia hết cho 17
Ta có : (24a+16b)+(10a+b)=34a+17b chia hết cho 17