Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Nguyet9ak47 mk ko bt có đúng ko nhưng bn tham khảo nhé:
ta co a+b>c suy ra 2c<a+b+c=2 =>c<1,a<1,b<1
(1-a)(1-b)(1-c)>0
=>ab+bc+ac>1+abc
lai co
4=2(ab+bc+ac)+a2+b2+c2
tu do suy ra
4>a2+b2+c2+2(1+abc)=>a2+b2+c2+2abc<2=>... a,b,c>0)
P/s: Nguyet9ak47, Chứng minh rằng sao bn ko viết là CMR
Câu trả lời hay nhất: Tam giác ABC có độ dài 3 cạnh là a,b,c và có chu vi là 2
--> a + b + c = 2
Trong 1 tam giác thì ta có:
a < b + c
--> a + a < a + b + c
--> 2a < 2
--> a < 1
Tương tự ta có : b < 1, c < 1
Suy ra: (1 - a)(1 - b)(1 - c) > 0
⇔ (1 – b – a + ab)(1 – c) > 0
⇔ 1 – c – b + bc – a + ac + ab – abc > 0
⇔ 1 – (a + b + c) + ab + bc + ca > abc
Nên abc < -1 + ab + bc + ca
⇔ 2abc < -2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < a² + b² + c² – 2 + 2ab + 2bc + 2ca
⇔ a² + b² + c² + 2abc < (a + b + c)² - 2
⇔ a² + b² + c² + 2abc < 2² - 2 , do a + b = c = 2
⇔ a² + b² + c² + 2abc < 2
--> đpcm
p/s: kham khảo
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
$a(b-c)^2+b(a-c)^2\vdots a+b$
$\Leftrightarrow a(b^2-2bc+c^2)+b(a^2-2ac+c^2)\vdots a+b$
$\Leftrightarrow ab(a+b)-4abc+c^2(a+b)\vdots a+b$
$\Leftrightarrow 4abc\vdots a+b$
Giả sử $a+b$ là số nguyên tố lẻ. Đặt $a+b=p$
Khi đó;
$4abc\vdots p\Leftrightarrow abc\vdots p$
$\Rightarrow a\vdots p$ hoặc $b\vdots p$ hoặc $c\vdots p$
Nếu $a\vdots p\Leftrightarrow a\vdots a+b$ (vô lý với mọi $a>0$)
Nếu $b\vdots p$ thì tương tự (vô lý)
Nếu $c\vdots p\Leftrightarrow c\vdots a+b$. Mà $c>0$ nên $c\geq a+b$
$\Leftrightarrow a+b-c\leq 0$ (vi phạm bđt tam giác)
Do đó điều giả sử sai. Tức $a+b$ là hợp số.