Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left\{{}\begin{matrix}x^2-3xy+y^2=-1\\2x^2+xy+2y^2=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-3xy=-1\\2x^2+2y^2+xy=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2-3xy=-1\\2\left(x^2+y^2\right)+xy=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-2xy-3xy=-1\\2\left(\left(x+y\right)^2-2xy\right)+xy=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-5xy=-1\\2\left(x+y\right)^2-4xy+xy=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+y\right)^2-5xy=-1\\2\left(x+y\right)^2-3xy=8\end{matrix}\right.\)....(1)
đặt : \(\left\{{}\begin{matrix}xy=u\\x+y=v\end{matrix}\right.\) \(\Rightarrow\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}v^2-5u=-1\\2v^2-3u=8\end{matrix}\right.\) giải phương trình này bằng phương pháp thế
sau khi tìm được \(u\) và \(v\) tiếp đến ta áp dụng định lí vi ét đảo để tìm \(x\) và \(y\)

1. a) đặt nAl = a; nFe = b; nCu = c (mol); nH2 = 0,06 (mol)
PTHH:
2Al + 6HCl ---> 2AlCl3 + 3H2 (1)
mol: a 1,5a
Fe +2HCl ---> FeCl2 + H2 (2)
mol: b b
Cu + HCl -x-> (ko phản ứng)
chất rắn ko phản ứng là Cu nên mCu = 0,6 (g)
=> mAl + mFe = 2,25 - 0,6 = 1,65 (g) => 27a + 56b = 1,65 (g) (*)
Từ pt (1) và (2) => 1,5a + b = nH2 = 0,06 (mol) (**)
Từ (*) và(**) => a = 0,03 (mol); b = 0,015 (mol)
=> mAl = 0,81 (g); mFe = 0,84 (g)

Qua M kẻ các đường thẳng song song với các cạnh của tam giác
A1B1 // AB; A2C2 // AC; B2C1 // BC.
Dễ thấy các tam giác MB1C2; MA1C1;MA2B2 đều là các tam giác đều. Ta lại có MD B1C2 nên MD cũng là trung điểm thuộc cạnh B1C2 của tam giác MB1C2
Ta có 2 =
+
Tương tự: 2 =
+
2 =
+
=> 2( +
+
) = (
+
) + (
+
) + (
+
)
Tứ giác là hình bình hành nên
+
=
Tương tự: +
=
+
=
=> 2( +
+
) =
+
+
vì O là trọng tâm bất kì của tam giác và M là một điểm bất kì nên
+
+
= 3
.
Cuối cùng ta có:
2( +
+
) = 3
;
=> +
+
=
phần này là của toán nha bn