Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Qua 3 điểm thẳng hàng ta chỉ vẽ được duy nhất 1 đường thẳng. Qua 3 điểm không thẳng hàng ta vẽ được: 3 ( 3 − 1 ):2 = 3 đường thẳng ⇒ Số đường thẳng chênh lệch là: 3-1=2 đường thẳng Vậy: qua 2019 điểm trong đó có 3 điểm thẳng hàng ta vẽ được: 2019.2018:2 −6 = 2037165đường thẳng

Từ 1 điểm vẽ với 39 điểm còn lại ta được 39 đường thẳng.
Từ 40 điểm ta vẽ được:39.40=1560 đường thẳng
Vì một đường thẳng được tính 2 lần nên số đường thẳng là: 1560:2=780 đường thẳng
Đáp số: 780 đường thẳng

Ta thấy: Trong n điểm phân biệt cho trước, cứ qua 1 điểm ta vẽ được n - 1 đường thẳng. Vậy qua n điểm ta vẽ được n(n - 1) đoạn thẳng.
Nhưng nếu tính vậy thì mỗi đường thẳng sẽ bị tính đi tính lại 2 lần
Vậy số đoạn thẳng phân biệt được tạo ra từ n điểm phân biệt trên là: \(\frac{n\left(n-1\right)}{2}\)(đường thẳng)

a) Cho n điểm phân biệt trong đó không có 3 điểm nào thẳng hàng. Qua 2 điểm ta vẽ
được một đường thẳng. Có tất cả 28 đường thẳng. Tìm n?
b) Cho n điểm phân biệt trong đó có 7 điểm thẳng hàng. Kẻ các đường thẳng đi qua các cặp
điểm. Có tất cả 190 đường thẳng. Tìm n?
c) Cho 20 đường thẳng đôi một cắt nhau và không có ba đường thẳng nào đồng quy. Hỏi có
bao nhiêu giao điểm tạo thành?

a, Khi có 20 điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là 20.(20−1)2=10.19=190(đường thẳng).
Tuy nhiên trong 20 điểm phân biệt đó có đúng 6 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 6 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 6 điểm đó là 6.52=15(đường thẳng).
+ Nếu 6 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 6 điểm đó.
Do đó số đường thằng đi qua 6 điểm thằng hàng đã được tính thành 15 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với 20 điểm phân biệt trong đó có đúng 6 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
190 – 15 + 1 = 176(đường thẳng).
Vậy vẽ được 176 đường thẳng từ 20 điểm đó.
b
Khi có n điểm phân biệt, trong đó không có 3 điểm nào thẳng hàng thì số đường thẳng kẻ được là n(n−1)2 (đường thẳng).
Tuy nhiên trong n điểm phân biệt đó có đúng 7 điểm thẳng hàng đã được tính là không có ba điểm nào thẳng hàng.
+ Nếu trong 7 điểm không có ba điểm nào thẳng hàng thì số đường thẳng kẻ được đi qua 2 điểm trong 7 điểm đó là 7.62=21(đường thẳng).
+ Nếu 7 điểm thẳng hàng thì chỉ có duy nhất 1 đường thẳng đi qua 7 điểm đó.
Do đó số đường thằng đi qua 7 điểm thằng hàng đã được tính thành 21 đường, tuy nhiên thực tế chỉ có 1 đường.
Vì vậy, với n điểm phân biệt trong đó có đúng 7 điểm thẳng hàng, ngoài ra không có 3 điểm nào khác thẳng hàng thì số đường thẳng kẻ được là:
n(n−1)2−21+1=n(n−1)2−20 (đường thẳng).
Mà có tất cả 211 đường thẳng
Do đó n(n−1)2−20=211
Hay n(n−1)2=231
Nên n(n – 1) = 462 = 22 . 21
Suy ra n = 22
Vậy có 22 điểm phân biệt.

1 điểm với 19 điểm còn lại tạo thành 19 đường thẳng,
mà có 20 điểm nên số đường thẳng được tạo thành là: 19.20= 380 (đường thẳng)
vì mỗi đường thẳng được lặp lại hai lần
Vậy thật ra tất cả số đường thẳng là: 380:2=190 (đường thẳng)
đầu tiên ta có 20 đoạn thẳng,nếu vẽ điểm 1 nối với điểm 3 ta sẽ được thêm 1 doan thẩng và tránh lặp lại
cứ như vậy sau mỗi lượt sẽ trừ đi 1 đoạn thẳng
vậy ta sẽ có số đoạn thẳng là 20+19+18+17+16+15+14+13+12+111+10+9+8+7+6+5+4+3+2+1=211 đoạn thẳng