\(a+b\le4\). Tìm giá trị nhỏ nhất của biểu thức: P=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 5 2019

\(2\sqrt{ab}\le a+b\le4\Rightarrow\sqrt{ab}\le2\Rightarrow ab\le4\Rightarrow\frac{1}{ab}\ge\frac{1}{4}\)

\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{16}{ab}+ab+\frac{17}{2ab}\)

\(P\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{16ab}{ab}}+\frac{17}{2}.\frac{1}{4}\ge\frac{4}{4^2}+\frac{81}{8}=\frac{83}{8}\)

\(\Rightarrow P_{min}=\frac{83}{8}\) khi \(a=b=2\)

NV
13 tháng 5 2019

BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\)

Còn dòng dưới đơn giản là tách \(\frac{25}{ab}=\frac{1}{2ab}+\frac{17}{2ab}+\frac{16}{ab}\) ra thôi bạn

12 tháng 4 2020

Ta có: \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=\sqrt{8\left(a^2+ab+2ab+2ac\right)}=2\cdot\sqrt{2\left(a+b\right)\left(a+2c\right)}\)

\(\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)

Tương tự\(\hept{\begin{cases}\sqrt{8b^2+56}\le2a+3b+2c\\\sqrt{4c^2+7}=\sqrt{4c^2+ab+2ac+2bc}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\end{cases}}\)

=> Q>

Dấu "=" <=> \(\hept{\begin{cases}a=b=1\\c=1,5\end{cases}}\)

17 tháng 8 2020

ta có \(T=\frac{1}{2}\left(1-\frac{a^2}{2+a^2}+1-\frac{b^2}{2+b^2}+1-\frac{c^2}{2+c^2}\right)=\frac{1}{2}\left[3-\left(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\right)\right]\)

ta chứng minh rằng \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge1\)khi đó ta sẽ có \(T\le1\)

thật vậy, áp dụng Bất Đẳng Thức Cauchy-Schwarz ta có \(\frac{a^2}{2+a^2}+\frac{b^2}{2+b^2}+\frac{c^2}{2+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\)

ta cần chứng minh rằng \(\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+6}\ge1\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac\ge a^2+b^2+c^2+6\)

\(\Leftrightarrow ab+bc+ca\ge3\)

thật vậy, từ giả thiết ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le a+b+c\Leftrightarrow ab+bc+ca\le abc\left(a+b+c\right)\left(1\right)\)

mà \(abc\left(a+b+c\right)\le\frac{\left(ab+bc+ca\right)^2}{3}\)

từ (1) ta có \(\frac{ab+bc+ca}{3}\le\frac{\left(ab+bc+ca\right)^2}{3}\Leftrightarrow ab+bc+ca\ge3\left(đpcm\right)\)

vậy maxT=1 khi a=b=c=1

NV
9 tháng 3 2020

\(P=\sum\frac{a^2}{b^2+c^2+bc}\ge\sum\frac{a^2}{b^2+c^2+\frac{b^2+c^2}{2}}=\frac{2}{3}\sum\frac{a^2}{b^2+c^2}\ge\frac{2}{3}.\frac{3}{2}=1\) (Nesbitt)

Hình như ko cần sử dụng điều kiện

23 tháng 12 2016

a)\(B=\frac{1}{a^2+b^2}+\frac{1}{ab}+4ab=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)

Áp dụng BĐT AM-GM ta có:

\(B=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}+8ab-4ab\)

\(\ge\frac{4}{\left(a+b\right)^2}+2\sqrt{\frac{1}{2ab}\cdot8ab}-\left(a+b\right)^2=7\)

Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)

Vậy \(Min_B=7\) khi \(a=b=\frac{1}{2}\)

b)\(C\ge\frac{1}{1-3ab\left(a+b\right)}+\frac{4}{ab\left(a+b\right)}\)

\(\ge\frac{16}{1-3ab\left(a+b\right)+3ab\left(a+b\right)}+\frac{1}{\frac{\left(a+b\right)^3}{4}}\ge16+4=20\)

Dấu "=" xảy ra khi \(\begin{cases}a=b\\a+b=1\end{cases}\)\(\Rightarrow a=b=\frac{1}{2}\)

Vậy \(Min_C=20\) khi \(a=b=\frac{1}{2}\)

 

 

24 tháng 12 2016

thanks

NV
4 tháng 6 2019

- Nếu \(ab=0\Rightarrow M=4+2\sqrt{2}\) (1)

- Nếu \(ab\ne0\)

\(M=\frac{\frac{a^4}{a}+\frac{b^4}{b}+4}{ab+1}\ge\frac{\frac{\left(a^2+b^2\right)^2}{a+b}+4}{\frac{a^2+b^2}{2}+1}\ge\frac{\frac{\left(a^2+b^2\right)^2}{\sqrt{2\left(a^2+b^2\right)}}+4}{\frac{a^2+b^2}{2}+1}=3\) (2)

So sánh (1) và (2) \(\Rightarrow M_{min}=3\) khi \(a=b=1\)

- Do \(a^2+b^2=2\Rightarrow0\le a;b\le\sqrt{2}\)

\(\Rightarrow a\left(a-\sqrt{2}\right)\le0\Rightarrow a^2\le a\sqrt{2}\Rightarrow a^3\le a^2\sqrt{2}\)

Tương tự \(b^3\le b^2\sqrt{2}\) \(\Rightarrow a^3+b^3\le\left(a^2+b^2\right)\sqrt{2}=2\sqrt{2}\)

\(\Rightarrow M=\frac{a^3+b^3+4}{ab+1}\le\frac{4+2\sqrt{2}}{ab+1}\le4+2\sqrt{2}\)

\(\Rightarrow M_{max}=4+2\sqrt{2}\) khi \(\left(a;b\right)=\left(0;\sqrt{2}\right);\left(\sqrt{2};0\right)\)