Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Toán lớp 6Phân tích thành thừa số nguyên tố
Đinh Tuấn Việt 20/05/2015 lúc 22:51
Theo đề bài ta có:
a = p1m . p2n $\Rightarrow$⇒ a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$\Rightarrow$⇒ m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 4 Yêu Chi Pu đã chọn câu trả lời này.
nguyên 24/05/2015 lúc 16:50
Theo đề bài ta có:
a = p1m . p2n $$
a3 = p13m . p23n.
Số ước của a3 là (3m + 1).(3n + 1) = 40 (ước)
$$
m = 1 ; n = 3 hoặc m = 3 ; n = 1
Số a2 = p12m . p22n có số ước là [(2m + 1) . (2n + 1)] (ước)
-Với m = 1 ; n = 3 thì a2 có (2.1 + 1) . (2.3 + 1) = 3 . 7 = 21 (ước)
-Với m = 3 ; n = 1 thì a2 có (2.3 + 1) . (2.1 + 1) = 7 . 3 = 21 (ước)
Vậy a2 có 21 ước số.
Đúng 0
Captain America

b, a+1 và b+2007 chia hết cho 6
=> a+1 và b+2007 đều chẵn
=> a và b đều lẻ
=> a+b chẵn
Mà a là số nguyên dương nên 4^a chẵn
=> 4^a+a+b chẵn
=> 4^a+a+b chia hết cho 2 (1)
Lại có : a+1 và b+2007 chia hết cho 3
=> a chia 3 dư 2 và b chia hết cho 3
=> a+b chia 3 dư 2
Mặt khác : 4^a = (3+1)^a = B(3)+1 chia 3 dư 1
=> 4^a+a+b chia hết cho 3 (2)
Từ (1) và (2) => 4^a+a+b chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
Tk mk nha
Vì chưa thấy ai giải câu a nên thầy sẽ giải hộ nhé
Ta có \(32\equiv1\left(mod31\right)\Rightarrow32^{402}\equiv1^{402}=1\left(mod31\right)\)(Theo thuyết đồng dư)
nên \(32^{402}=2^{2010} \)chia 31 dư 1 suy ra \(2^{2011}\)chia 31 dư 2
Phần còn lại em tự làm nhé

Bài 1:
a)
Giả sử a,b đều chia 3 dư 1
=> ab: 3 dư(1.1=1)(Lưu ý: Nếu 2 số chia cùng 1 số đều dư thì Tích 2 số đó chia cho số đó thì dư sẽ là tích của 2 dư 2 số đó)
=> ab -1 sẽ chia hết cho 3 (Cùng số dư khi trừ thì sẽ chia hết cho số đó)
Giả sử a,b đều chia 3 dư 2
=> ab : 3 (dư 2 x 2 = 4) => ab : 3 dư 1( Vì số dư không bao giờ lớn hơn số chia)
=> ab -1 sẽ chia hết cho 3
Vậy thì nếu a,b chia 3 cùng một số dư thì ab - 1 chia hết cho 3
b)
Ta nhận thấy số số 1 mà là số chẵn thì sẽ chia hết cho 11
Ví dụ: 11 : 11 = 1
1111 : 11 = 101
111111 : 11 = 10101
,.......
Số số 1 là 2002( là số chằn)
=> Số a chia hết cho 11 => a là hợp số
Bài 2:
Ta có: ab - ba = 10a + b - 10b - a = 9a - 9b =9 x (a - b)
Ta thấy rằng là số sau khi trừ luôn chia hết cho 9 => Số đó là hợp số
=> Không có số nguyên tố ab thỏa mãn điều kiện trên

a, vì trong 3 số đó có số chia hết cho 3
b, vì trong 3 số lẻ có số chia hết cho 3
c, vì 6 số thì sẽ 3 cặp có tổng tương đương và cặp ở giữa là 2 số liên tiếp có tổng là số lẻ cho nên 3 cặp đó sẽ bằng tổng nhau nhân lên 3 lần lên 6 số liên tiếp ko chia hết cho 6 mà chỉ chia hết cho 3.
a)Gọi 3 số chẵn liên tiếp là 2n;2n+2;2n+4.Theo bài ra ta có: \(\left(2n+2n+2+2n+4\right)⋮3\)
- \(2n+2n+2+2n+4=6n+6\)
\(=6\left(n+1\right)\)
\(=\left[3.2\left(n+1\right)\right]⋮3\)=>Điều phải chứng minh.
b)Gọi 3 số lẻ liên tiếp là 2n+1;2n+3 và 2n+5.Theo bài ra ta có: \(\left(2n+1+2n+3+2n+5\right)⋮3\)
- \(2n+1+2n+3+2n+5=6n+9\)
\(=\left[3\left(2n+3\right)\right]⋮3\) =>Điều phải chứng minh.
c)Gọi 6 số nguyên liên tiếp là n;n+1;n+2;...;n+5.Theo bài ra ta có:
- \(\left(n+n+1+n+2+n+3+n+4\right)⋮5\)
\(=5n+10\)
\(=\left[5\left(n+2\right)\right]⋮5\)=>Điều phải chứng minh.
- \(\left(n+n+1+n+2+n+3+n+4+n+5\right)\)không \(⋮6\)
\(=6n+15\) .Vì \(15\) không \(⋮6\)=> \(6n+15\)không \(⋮6\).
T_i_c_k cho mình nha.
Thank you so much!Wish you would better at Math ^^