Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow2a^2+2b^2\ge a^2+b^2+2ab\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)
Suy ra \(\frac{2011}{2a^2+2b^2+2008}\le\frac{2011}{\left(a+b\right)^2+2008}=\frac{2011}{4+2008}=\frac{2011}{2012}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

Đặt \(Q=\dfrac{2011}{2a^2+2b^2+2008}\)
Ta có:
\(\dfrac{a+b}{2}=1=>a+b=2=>a=2-b\)
Thay a=2-b vào Q ta được:
\(Q=\dfrac{2011}{2a^2+2\left(2-a\right)^2+2008}\)
=\(\dfrac{2011}{2a^2+2\left(4-4a+a^2\right)+2008}\)
=\(\dfrac{2011}{2a^2+8-8a+2a^2+2008}\)
=\(\dfrac{2011}{4a^2-8a+2016}\)
=\(\dfrac{2011}{4a^2-8a+4+2012}\)
=\(\dfrac{2011}{4\left(a^2-2a+1\right)+2012}\)
=\(\dfrac{2011}{4\left(a-1\right)^2+2012}\)
Vì \(2a^2+2b^2+2008>0với\forall a,b\)
nên để Q đạt GTLN thì \(2a^2+2b^2+2008\)đạt GTNN hay \(4\left(a-1\right)^2+2012\)đạt GTNN
Mặt khác \(4\left(a-1\right)^2\)\(\ge\)0 với \(\forall\)a
Do đó\(4\left(a-1\right)^2+2012\) \(\ge\)0 với \(\forall\)a
Dấu "=" xảy ra <=> a-1=0<=>a=1
Mà a+b=2=>b=1
Vậy GTN của \(Q=\dfrac{2011}{2a^2+2b^2+2008}\)là \(\dfrac{2011}{2012}\)khi a=b=1

từ gt =>a+b=2
Áp dụng BĐT bu nhi a, ta có
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2=4\Rightarrow A\le\frac{2011}{4+2008}=\frac{2011}{2012}\)
dấu = xảy ra ,=> a=b=1

Từ gt⇒0≤b≤2−2a3≤2;0≤b≤4−2a≤4⇒0≤b≤2−2a3≤2;0≤b≤4−2a≤4
⇒0≤b≤2⇒0≤b≤2
Tương tự⇒a,b∈[0;2]⇒a,b∈[0;2]
Ta có:
A=a(a−2)−b≤a(a−2)≤0A=a(a−2)−b≤a(a−2)≤0
Dấu = xảy ra⇔a=b=0⇔a=b=0 hoặc a=2,b=0a=2,b=0
Ta có:
A≥a2−2a+2a3−2=(a−23)2−229≥−229A≥a2−2a+2a3−2=(a−23)2−229≥−229
và A≥a2−2a+2a−4=a2−4≥−4A≥a2−2a+2a−4=a2−4≥−4
Vì A≥−4A≥−4 ko xảy ra dấu = nên A≥−229⇔a=23,b=149

áp dụng bđt bunhia cốp xki ta có cặp số \(\left(a,2b,c\right)\left(1,\sqrt{2},1\right)\)
\(\left(a^2+2b^2+c^2\right)\left(1+\sqrt{2}+1\right)>=\left(a+b+c\right)^2\)
\(a^2+2b^2+c^2>=\frac{0^2}{2+\sqrt{2}}=0\)
dấu "=" xảy ra khi và chỉ khi \(\frac{a^2}{1}=\frac{b^2}{\sqrt{2}}=\frac{c}{1}\)
vậy min P =0
sorry bạn mình ko tìm đc giá trị lớn nhất mà chỉ tìm đc giá trị nhỏ nhất thôi

Ta có: \(A=a\left(a^2-bc\right)+b\left(b^2-ac\right)+c\left(c^2-ab\right)=0\)
\(\Rightarrow A=a^3+b^3+c^3-3abc=0\) \(\Rightarrow A=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Rightarrow A=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow A=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
Vì \(a+b+c\ne0\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
Xét \(M=a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow2M=2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Rightarrow2M=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a,b,c\)
\(\Rightarrow a-b=0;b-c=0;c-a=0\) \(\Rightarrow a=b=c\)
\(\Rightarrow P=\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}=1+1+1=3\)
Thiếu đề k bn ???