Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
(đơn vị đo trên các trục tọa độ là xentimet)
Lời giải:
a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x. Vẽ đường thẳng qua B(0; 2) và E(-1; 0) được đồ thị hàm số y = 2x + 2.
b) Tìm tọa độ của điểm A: giải phương trình 2x + 2 = x, tìm được x = -2. Từ đó tìm được x = -2, từ đó tính được y = -2, ta có A(-2; -2).
c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.
a) Đồ thị hàm số \(y=x\) là 1 đường thẳng đi qua 2 điểm O \(\left(0;0\right)\) và E\(\left(1;1\right)\)
Đồ thị hàm số \(y=2x+2\) là 1 đường thẳng đi qua 2 điểm B \(\left(0;2\right)\) và D \(\left(-1;0\right)\)
b) Hoành độ giao điểm A của 2 đường thẳng đã cho là nghiệm của pt:
\(x=2x+2\)
\(\Leftrightarrow\) \(x-2x=2\)
\(\Leftrightarrow\) \(-x=2\)
\(\Leftrightarrow\) \(x=-2\)
Tại \(x=-2\) thì giá trị của y là: \(y=2.\left(-2\right)+2=-2\)
Vậy tọa độ điểm A \(\left(-2;-2\right)\)
c) Đường thẳng song song với trục tung Ox và cắt trục hoành tại điểm B(0;2)
\(\Rightarrow\) Suy ra phương trình đường thẳng có dạng \(y=2x\)
Hoành độ giao điểm C của 2 đường thẳng y=2x và y=x là nghiệm của pt: 2x=x
\(\Rightarrow\) Tọa độ điểm C (2;2)
\(S_{ABC}=S_{ADO}+S_{BCOD}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Đồ thị được vẽ như hình bên.
b) Giao của đường thẳng y = -x + 2 với Ox là B(2; 0).
Vì hai đường thẳng y = 0,5x + 2 và y = -x + 2 đều có tung độ gốc là 2 nên giao của chúng là C(0; 2).
Ta có tg A = 0,5. Suy ra ≈ 26034’.
Vì ∆BOC là tam giác vuông cân nên =450 .
Suy ra ≈ 1800 – (26034’ + 450) = 108026’.
c) Ta có AB = 6 (cm), AC = = 2√5 (cm), BC = 2√2 (cm).
Do đó chu vi của ∆ABC là 6 + 2√5 + 2√2 (cm).
Diện tích của ∆ABC là: AB . OC =
. 6 . 2 = 6 (cm2).
Bài giải:
a) Đồ thị được vẽ như hình bên.
b) Giao của đường thẳng y = -x + 2 với Ox là B(2; 0).
Vì hai đường thẳng y = 0,5x + 2 và y = -x + 2 đều có tung độ gốc là 2 nên giao của chúng là C(0; 2).
Ta có tg A = 0,5. Suy ra ≈ 26034’.
Vì ∆BOC là tam giác vuông cân nên =450 .
Suy ra ≈ 1800 – (26034’ + 450) = 108026’.
c) Ta có AB = 6 (cm), AC = = 2√5 (cm), BC = 2√2 (cm).
Do đó chu vi của ∆ABC là 6 + 2√5 + 2√2 (cm).
Diện tích của ∆ABC là: AB . OC =
. 6 . 2 = 6 (cm2).
![](https://rs.olm.vn/images/avt/0.png?1311)
a) * Vẽ đồ thị hàm số y = 0,5x + 2 (1)
Cho x = 0, tính được y = 2 => D(0; 2) thuộc đồ thị.
Cho y = 0, 0 = 0,5.x + 2 => x = -4 => A(-4; 0) thuộc đồ thị. Đường thẳng vẽ qua A, D là đồ thị của (1).
*Vẽ đồ thị hàm số y = 5 – 2x (2)
-Cho x = 0 tính được y = 5 E(0; 5) thuộc đồ thị
-Cho y = 0, 0 = 5 – 2x => x = 2,5 => B(2,5; 0) thuộc đồ thị. Đường thẳng vẽ qua B, E là đồ thị của (2).
b) Ở câu a) ta tính được tọa độ của hai điểm A và B: A(-4; 0), B(2,5; 0)
a:![loading...](https://cdn3.olm.vn/upload/img/1201/img_2023-12-01_6569f7ed4025a.jpg)
b: Phương trình hoành độ giao điểm là:
\(2x+7=-\dfrac{1}{2}x+2\)
=>\(2x+\dfrac{1}{2}x=2-7=-5\)
=>2,5x=-5
=>x=-2
Thay x=-2 vào y=2x+7, ta được:
\(y=2\cdot\left(-2\right)+7=7-4=3\)
Vậy: A(-2;3)
c: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x=-7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\x=-3,5\end{matrix}\right.\)
Tọa độ C là:
\(\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\-\dfrac{1}{2}x=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=4\end{matrix}\right.\)
Vậy: C(4;0)
A(-2;3); B(-3,5;0); C(4;0)
\(AB=\sqrt{\left(-3,5+2\right)^2+\left(0-3\right)^2}=\dfrac{3\sqrt{5}}{2}\)
\(AC=\sqrt{\left(4+2\right)^2+\left(0-3\right)^2}=3\sqrt{5}\)
\(BC=\sqrt{\left(4+3,5\right)^2+\left(0-0\right)^2}=7,5\)
Vì \(AB^2+AC^2=BC^2\)
nên ΔABC vuông tại A
=>\(\widehat{BAC}=90^0\)
Xét ΔABC vuông tại A có \(sinABC=\dfrac{AC}{BC}=\dfrac{3\sqrt{5}}{7,5}\)
=>\(\widehat{ABC}\simeq63^0\)
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-63^0=27^0\)
d: Chu vi tam giác ABC là:
\(C_{ABC}=AB+AC+BC=\dfrac{3\sqrt{5}}{2}+3\sqrt{5}+7,5=\dfrac{9\sqrt{5}+15}{2}\)
Diện tích tam giác ABC là:
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot\dfrac{3\sqrt{5}}{2}\cdot3\sqrt{5}=\dfrac{45}{4}\)