Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lời giải của bạn Nhật Linh đúng rồi, tuy nhiên cần thêm điều kiện để A có nghĩa: \(x\ne\pm2\)

ĐKXĐ : \(x\ne\left\{1;0\right\}\)
a) \(P=\left(\dfrac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\dfrac{1-2x^2+4x}{x^3-1}+\dfrac{1}{x-1}\right):\dfrac{2x}{x^3+x}\)
\(P=\left(\dfrac{\left(x-1\right)^2}{x^2+x+1}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{1}{x-1}\right)\cdot\dfrac{x\left(x^2+1\right)}{2x}\)
\(P=\left(\dfrac{\left(x-1\right)\left(x-1\right)^2}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=\left(\dfrac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=\left(\dfrac{x^3-3x^2+3x-1-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=\left(\dfrac{x^3-1}{x^3-1}\right)\cdot\dfrac{x^2+1}{2}\)
\(P=1\cdot\dfrac{x^2+1}{2}\)
\(P=\dfrac{x^2+1}{2}\)
b) Vì \(x^2\ge0\forall x\)
\(\Rightarrow P\ge\dfrac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Mà ĐKXĐ \(x\ne0\)
=> ... đến đây ko biết làm :v
AI BIẾT LÀM HỘ ĐI
Cái này mk chưa học nên cx chưa rõ cách làm chính xác mong bạn thông cảm :)

Câu 1:
a: \(A=\dfrac{x+1-x+1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^2+1-2x}{2}\)
\(=\dfrac{2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)^2}{2}=\dfrac{x-1}{x+1}\)
b: Để A=x/6 thì \(\dfrac{x-1}{x+1}=\dfrac{x}{6}\)
\(\Leftrightarrow x^2+x-6x+6=0\)
=>x=3 hoặc x=2

a) Tìm điều kiện xác định A và rút gọc A
b) Tìm x để A = -2
c) Tìm giá trị nhỏ nhất của A

A = \(\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1}{x^2+5x+5}=\dfrac{\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1}{x^2+5x+5}=\dfrac{\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1}{x^2+5x+5}=\dfrac{\left(x^2+5x+5\right)^2}{x^2+5x+5}=x^2+5x+5\)B = \(\dfrac{\left|x-1\right|+\left|x\right|+x}{3x^2-4x+1}\)với x < 0
Với x < 0 thì |x-1| = 1-x, |x| = -x, ta có:
\(\dfrac{1-x-x+x}{\left(x-1\right)\left(3x-1\right)}=\dfrac{1-x}{\left(x-1\right)\left(3x-1\right)}=\dfrac{x-1}{\left(x-1\right)\left(1-3x\right)}=\dfrac{1}{1-3x}\)
Mysterious PersonNguyễn Đình DũngNguyễn Thanh Hằng๖ۣۜĐặng♥๖ۣۜQuý
giúp!! 2h30 đi rồi

\(A=[\dfrac{2}{\left(x+1\right)^3}.\dfrac{1+x}{x}+\left(\dfrac{1}{\left(x+1\right)^2}.\dfrac{1+x^2}{x^2}\right)].\dfrac{x^3}{x-1}=\left(\dfrac{2+2x}{x\left(x+1\right)^3}+\dfrac{1+x^2}{x^2}\right).\dfrac{x^3}{x-1}=\dfrac{2x+2x^2+\left(1+x^2\right)\left(x+1\right)}{x^2\left(x+1\right)^3}.\dfrac{x^3}{x-1}=\dfrac{2x\left(1+x\right)+\left(1+x^2\right)\left(x+1\right)}{x^2\left(x+1\right)^3}.\dfrac{x^3}{x-1}=\dfrac{\left(x+1\right)\left(2x+1+x^2\right)}{x^2\left(x+1\right)^3}.\dfrac{x^3}{x-1}=\dfrac{\left(x+1\right)^3}{x^2\left(x+1\right)^3}.\dfrac{x^3}{x-1}=\dfrac{x\left(x+1\right)}{x-1}=\dfrac{x^2+x}{x-1}\)
ý a có bn lm rồi, mk lm ý b,c thôi nhé
b/ A < 1 \(\Leftrightarrow\dfrac{x^2+x}{x-1}< 1\)
\(\Leftrightarrow x^2+x< x-1\)
\(\Leftrightarrow x^2+x-x+1< 0\)
\(\Leftrightarrow x^2+1< 0\)
\(\Leftrightarrow x^2< -1\) (vô lí)
Vậy k có gt nào của x t/m
c/ \(\dfrac{x^2+x}{x-1}=\dfrac{x^2+x-2+2}{x-1}=\dfrac{\left(x+2\right)\left(x-1\right)+2}{x-1}\)
\(=\dfrac{\left(x+2\right)\left(x-1\right)}{x-1}+\dfrac{2}{x-1}=x+2+\dfrac{2}{x-1}\)
Để A \(\in\) Z <=> \(\dfrac{2}{x-1}\in Z\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1=\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow x=\left\{-1;0;2;3\right\}\)
Vậy....