Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3 ...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ﴾ i= 1,2,3...10﴿.
nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau: Ta đen Bi chia cho 10 sẽ được 10 số dư ﴾ các số dư ∈ { 1,2.3...9}﴿.
Theo nguyên tắc Di‐ric‐ lê, phải có ít nhất 2 số dư bằng nhau. Các số Bm ‐Bn, chia hết cho 10 ﴾ m>n﴿ ⇒ ĐPCM.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10S1=a1;S2=a1+a2;...;S10=a1+a2+...+a10
Xét 1010 số S1;S2;S3;...:S10S1;S2;S3;...:S10 ta có 2 trường hợp:
(∗)(∗) Nếu có 1 số SkSk nào có tận cùng =0(Sk=a1;a2;...;a10;k=1→10)=0(Sk=a1;a2;...;a10;k=1→10)
⇒⇒ Tổng kk số a1;a2;...;ak⋮10a1;a2;...;ak⋮10
(∗)(∗) Nếu không có số nào trong 10 số S1;S2;...;S10S1;S2;...;S10 tận cùng bằng 00
⇒⇒ Chắc chắn phải có ít nhất 2 số nào đó có chữ số tận cùng giống nhau. Ta gọi 2 số đó là Sm;Sn(1≤m<n≤10)Sm;Sn(1≤m<n≤10)
Sm=a1+a2+...+amSm=a1+a2+...+am
Sn=a1+a2+...+am+am+1+...+anSn=a1+a2+...+am+am+1+...+an
⇒Sn−Sm=am+1+am+2+...+an⇒Sn−Sm=am+1+am+2+...+an tận cùng là 0
⇒n−m=am+1+am+2+...+an⋮10⇒n−m=am+1+am+2+...+an⋮10
Vậy a1+a2+...+a10⋮10a1+a2+...+a10⋮10 (Đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
nhấn vào nhé Cho 10 số tự nhiên bất kì :a1;a2;a3;...;a10.Chứng minh rằng thế nào cũng có một số hoặc tổng các số liên tiếp nhau trong dãy trên chia hết cho 10 sẽ có đáp án đó
duyệt đi
![](https://rs.olm.vn/images/avt/0.png?1311)
10 số tự nhiên liên tiếp nên ta lấy ví dụ : 1,2,3,4,5,6,7,8,9,10 là 10 suy ra mười số liên tiếp chắc chắn có một số chia hết 10
Đặt \(S_1=a_1\)
\(S_2=a_1+a_2\)
\(S_3=a_1+a_2+a_3\)
\(.......\)
\(S_{10}=a_1+a_2+a_3+.....+a_{10}\)
Giả sử tồn tại \(S_i\left(1\le i\le10\right)\) nào đó chia hết cho 10 thì bài toán được chứng minh.
Giả sử không tồn tại \(S_i\) nào đó không chia hết cho 10 thì khi chia cho 10 có 9 số dư:1;2;3;4;5;.....9
Mà có 10 tổng nên tồn tại 2 tổng khi chia cho 10 có cùng số dư.
Gọi 2 tổng đó là \(S_m;S_n\left(1\le m< n\le9\right)\)
Khi đó \(S_m-S_n⋮10\Rightarrowđpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lập dãy số .
Đặt B1 = a1.
B2 = a1 + a2 .
B3 = a1 + a2 + a3
...................................
B10 = a1 + a2 + ... + a10 .
Nếu tồn tại Bi ( i= 1,2,3...10). nào đó chia hết cho 10 thì bài toán được chứng minh.
Nếu không tồn tại Bi nào chia hết cho 10 ta làm như sau:
Ta đen Bi chia cho 10 sẽ được 10 số dư ( các số dư { 1,2.3...9}). Theo nguyên tắc Di-ric- lê, phải có ít nhất 2
số dư bằng nhau. Các số Bm -Bn, chia hết cho 10 ( m>n) ĐPCM.
![](https://rs.olm.vn/images/avt/0.png?1311)
TH1: Trong 10 số tự nhiên đã cho sẽ có 1 số chia hết cho 10
TH2: Trong 10 số tự nhiên đã cho không có số nào chia hết cho 10
Ta đem a1;a2;...;a10 chia cho 10 số dư có thể là 1;2;...;9
Suy ra có ít nhất 2 số cùng số dư
Suy ra hiệu 2 số đó chia hết cho 10