K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!


Các bạn 2k5 chuẩn bị thi THPTQG 2023 hãy thử sức mình với những đề thi thử trên dgnl.olm.vn nhé!___Kỳ thi tốt nghiệp THPT có nội dung thi nằm trong chương trình giáo dục THPT hiện hành, chủ yếu là chương trình lớp 12; đề thi được xây dựng đáp ứng yêu cầu của Kỳ thi, bảo đảm độ phân hóa phù hợp và hạn chế học tủ, học lệch, khuyến khích sáng tạo của thí sinh.Các bài thi thử của...
Đọc tiếp

loading...

Các bạn 2k5 chuẩn bị thi THPTQG 2023 hãy thử sức mình với những đề thi thử trên dgnl.olm.vn nhé!

___

Kỳ thi tốt nghiệp THPT có nội dung thi nằm trong chương trình giáo dục THPT hiện hành, chủ yếu là chương trình lớp 12; đề thi được xây dựng đáp ứng yêu cầu của Kỳ thi, bảo đảm độ phân hóa phù hợp và hạn chế học tủ, học lệch, khuyến khích sáng tạo của thí sinh.

Các bài thi thử của OLM-ĐGNL cung cấp có cấu trúc tương tự với các bài thi chính thức, giúp các sĩ tử có đánh giá chính xác nhất học lực hiện tại để có kế hoạch chuẩn bị và ôn tập phù hợp.

📝Đề minh họa Tốt nghiệp THPT năm 2023 của Bộ GD&ĐT (miễn phí):
https://dgnl.olm.vn/exam/de-tham-khao-tot-nghiep-thpt-nam-2023.2165294755

📝Tốt nghiệp THPT - Đề thi thử lần 1 (miễn phí):
https://dgnl.olm.vn/exam/de-thi-thu-tot-nghiep-thpt-lan-1.2164114691

📝Tốt nghiệp THPT - Đề thi thử lần 2 (đề mở ngày 31/3, đăng ký thi trước giờ mở đề giảm giá chỉ còn 100,000đ. Đăng ký thi sau giờ mở đề giá là 150,000đ):
https://dgnl.olm.vn/exam/tot-nghiep-thpt-de-thi-thu-lan-2.2174632638

21
CT
28 tháng 3 2023

Hướng dẫn thí sinh tham gia thi thử trên OLM-ĐGNL: https://dgnl.olm.vn/tin-tuc/huong-dan-hoc-sinh-tham-gia-thi-thu-tren-olm-dgnl-643823112

28 tháng 3 2023

2k9 làm thử được không cô nhỉ :)

Các bạn 2k5 chuẩn bị thi THPTQG 2023 hãy thử sức mình với những đề thi thử trên dgnl.olm.vn nhé.___Kỳ thi tốt nghiệp THPT có nội dung thi nằm trong chương trình giáo dục THPT hiện hành, chủ yếu là chương trình lớp 12; đề thi được xây dựng đáp ứng yêu cầu của Kỳ thi, bảo đảm độ phân hóa phù hợp và hạn chế học tủ, học lệch, khuyến khích sáng tạo của thí sinh.Các bài thi thử của...
Đọc tiếp

loading...

Các bạn 2k5 chuẩn bị thi THPTQG 2023 hãy thử sức mình với những đề thi thử trên dgnl.olm.vn nhé.

___

Kỳ thi tốt nghiệp THPT có nội dung thi nằm trong chương trình giáo dục THPT hiện hành, chủ yếu là chương trình lớp 12; đề thi được xây dựng đáp ứng yêu cầu của Kỳ thi, bảo đảm độ phân hóa phù hợp và hạn chế học tủ, học lệch, khuyến khích sáng tạo của thí sinh.

Các bài thi thử của OLM-ĐGNL cung cấp có cấu trúc tương tự với các bài thi chính thức, giúp các sĩ tử có đánh giá chính xác nhất học lực hiện tại để có kế hoạch chuẩn bị và ôn tập phù hợp.

📝Đề minh họa Tốt nghiệp THPT năm 2023 của Bộ GD&ĐT (miễn phí):

https://dgnl.olm.vn/exam/de-tham-khao-tot-nghiep-thpt-nam-2023.2165294755

📝Tốt nghiệp THPT - Đề thi thử lần 1 (đề đã mở, miễn phí):

https://dgnl.olm.vn/exam/de-thi-thu-tot-nghiep-thpt-lan-1.2164114691

📝Tốt nghiệp THPT - Đề thi thử lần 2 (đề đã mở, giá 150,000đ):

https://dgnl.olm.vn/exam/tot-nghiep-thpt-de-thi-thu-lan-2.2174632638

📝Tốt nghiệp THPT - Đề thi thử lần 3 (đề đã mở, giá 150,000đ):

https://dgnl.olm.vn/exam/tot-nghiep-thpt-de-thi-thu-lan-3.2192364695

2
21 tháng 5 2023

4/7 : 2/5 = 10/7

Tổng số phần bằng nhau:

10 + 7 = 17 (phần)

Số sản phẩm cửa hàng thứ hai bán được:

1360 : 17 × 10 = 800 (sản phẩm)

Số sản phẩm cửa hàng thứ nhất bán được:

1360 : 17 × 7 = 560 (sản phẩm)

15 tháng 5 2023

Cậu đăng lên mục câu hỏi để mọi người có thể giúp cậu được nha!

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Bài 3:

Áp dụng các hằng đẳng thức đáng nhớ ta có:

$C=a^4+b^4=(a^2+b^2)^2-2a^2b^2$

$=[(a+b)^2-2ab]^2-2(ab)^2$

$=(8^2-2.15)^2-2.15^2=706$

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Bài 2:

a)

$D=-x^2+6x-11=-11-(x^2-6x)=-2-(x^2-6x+9)$

$=-2-(x-3)^2$

Vì $(x-3)^2\geq 0$ với mọi $x$ nên $D=-2-(x-3)^2\leq -2$

Vậy GTLN của $D$ là $-2$ khi $(x-3)^2=0\Leftrightarrow x=3$
b)

$F=4x-x^2+1=1-(x^2-4x)=5-(x^2-4x+4)=5-(x-2)^2$

$\leq 5-0=5$

Vậy $F_{\max}=5$. Giá trị này được khi $(x-2)^2=0\leftrightarrow x=2$

31 tháng 3 2017

a) y= -x4 + 2mx2 – 2m + 1(Cm). Tập xác định: D = R

y ‘ = -4x3 + 4mx = -4x (x2 – m)

- Với m ≤ 0 thì y’ có một nghiệm x = 0 và đổi dấu + sang – khi qua nghiệm này. Do đó hàm số có một cực đại là x = 0

Do đó, hàm số có 2 cực trị tại x = ± √m và có một cực tiểu tại x = 0

b) Phương trình -x4 + 2mx2 – 2m + 1 = 0 luôn có nghiệm x = ± 1 với mọi m nên (Cm) luôn cắt trục hoành.

c) Theo lời giải câu a, ta thấy ngay:

với m > 0 thì đồ thị (Cm) có cực đại và cực tiểu.


31 tháng 3 2017

a) . = = = = 3^{2} = 9.

b) : = = = = = 2^{3} = 8.

c) + = 16^{0,75} + = + 4^{2,5} = 2^{4.0,75} + 2^{2.2,5} = 2^{3} + 2^{5} = 40.

d) - = - = - = 5^{2. 1,5} - = 121.



GV
26 tháng 4 2017

a) \(9^{\dfrac{2}{5}}.27^{\dfrac{2}{5}}=\left(9.27\right)^{\dfrac{2}{5}}=\left(3^2.3^3\right)^{\dfrac{2}{5}}=3^{5.\dfrac{2}{5}}=3^2=9\)

b) \(=\left(\dfrac{144}{9}\right)^{\dfrac{3}{4}}=\left(\dfrac{12}{3}\right)^{2.\dfrac{3}{4}}=4^{\dfrac{3}{2}}=2^{2.\dfrac{3}{2}}=2^3=8\)

c) \(=\left(\dfrac{1}{2}\right)^{4.\left(-0,75\right)}+\left(\dfrac{1}{4}\right)^{-\dfrac{5}{2}}\)

\(=\left(\dfrac{1}{2}\right)^{-3}+\left(\dfrac{1}{2}\right)^{-5}\)

\(=2^3+2^5=40\)

d) \(=\left(0,2\right)^{2.\left(-1.5\right)}-\left(0,5\right)^{3.\dfrac{-2}{3}}\)

\(=\left(\dfrac{1}{5}\right)^{-3}-\left(\dfrac{1}{2}\right)^{-2}\)

\(=5^3-2^2=121\)

31 tháng 3 2017

- Xét a = 0 hàm số trở thành y = -9x + b. Trường hợp này hàm số không có cực trị.

- Xét a # 0. Ta có : y’ = 5a2x2 + 4ax – 9 ; y’= 0 ⇔ hoặc

- Với a < 0 ta có bảng biến thiên :

Theo giả thiết điểm cực đại nên . Theo yêu cầu bài toán thì

- Với a > 0 ta có bảng biến thiên :

là điểm cực đại nên . Theo yêu cầu bài toán thì:

Vậy các giá trị a, b cần tìm là: hoặc .

7 tháng 6 2017

a) \(2^{x+4}+2^{x+2}=5^{x+1}+3\cdot5^x\)

\(\Rightarrow2^x+2^4+2x^x+2^2=5^x\cdot x+3\cdot5^x\)

\(\Leftrightarrow2^x+16+2^x\cdot4=5\cdot5^x+3\cdot5^x\)

\(\Leftrightarrow16\cdot2^x+4\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot2^x=8\cdot5^x\)

\(\Leftrightarrow20\cdot\left(\dfrac{2}{5}\right)^x=8\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\dfrac{2}{5}\)

\(\Leftrightarrow\left(\dfrac{2}{5}\right)^x=\left(\dfrac{2}{5}\right)^1\)

\(\Rightarrow x=1\)

31 tháng 3 2017

a) ta có 2√5= = √20 ; 3√2 = = √ 18 => 2√5 > 3√2

=> <

b) 6√3 = = √108 ; 3√6 = = √54 => 6√3 > 3√6 => >



GV
26 tháng 4 2017

a) \(2\sqrt{5}=\sqrt{2^2.5}=\sqrt{20}\)

\(3\sqrt{2}=\sqrt{3^2.2}=\sqrt{18}\)

=> \(2\sqrt{5}>3\sqrt{2}\)

=> \(\left(\dfrac{1}{3}\right)^{2\sqrt{5}}< \left(\dfrac{1}{3}\right)^{3\sqrt{2}}\)

(vì cơ số \(\dfrac{1}{3}< 1\))

b) Vì \(3< 6^2\)

=> \(3^{\dfrac{1}{6}}< \left(6^2\right)^{\dfrac{1}{6}}\)

=> \(\sqrt[6]{3}< 6^{\dfrac{1}{3}}\)

=> \(\sqrt[6]{3}< \sqrt[3]{6}\)

=> \(7^{\sqrt[6]{3}}< 7^{\sqrt[3]{6}}\)