Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{10}{5}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=5\Rightarrow x=10\\\frac{y}{3}=5\Rightarrow y=10\end{cases}}\)
Vậy x = 10, y = 10
b, Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{7}=\frac{y}{8}=\frac{2x+3y}{2.7+3.8}=\frac{4}{60}=\frac{1}{12}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{7}=\frac{1}{12}\Rightarrow x=\frac{7}{12}\\\frac{y}{8}=\frac{1}{12}\Rightarrow y=\frac{2}{3}\end{cases}}\)
Vậy ...
\(c,3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{4}=\frac{y}{3}=\frac{x-y}{4-3}=\frac{1}{1}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{4}=1\Rightarrow x=4\\\frac{y}{3}=1\Rightarrow y=3\end{cases}}\)
Vậy ....
d,Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{x-y}{3-4}=\frac{48}{\left(-1\right)}=\left(-48\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=\left(-48\right)\Rightarrow x=-144\\\frac{y}{4}=\left(-48\right)\Rightarrow y=-192\end{cases}}\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 3: a) Ta có: y = 3x
Cho x = 1 => y = 3 . 1 = 3
=> A(1;3)
đồi thị của hàm số y = 3x là đường thẳng đi qua gốc tọa độ và điểm A
1 2 1 2 3 -1 -2 -1 O A
b) Khi f(-1) => y = 3 . (-1) = -3
Khi f(0) => y = 3 . 0 = 0
Khi f\(\left(\frac{1}{3}\right)\Rightarrow y=3.\frac{1}{3}=1\)
c) Khi y = -3 => -3 = 3x => x = \(\frac{-3}{3}\) = -1
Khi y = 6 => 6 = 3x => x = \(\frac{6}{3}\) = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo đề bài ta có: \(35\left(x+y\right)=210\left(x-y\right)=12xy\)
\(\Rightarrow\frac{35\left(x+y\right)}{420}=\frac{210\left(x-y\right)}{420}=\frac{12xy}{420}\)
\(\Rightarrow\frac{x+y}{12}=\frac{x-y}{2}=\frac{xy}{35}\left(1\right)\)
Áp dụng TCDTSBN ta có:
\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)+\left(x-y\right)}{12+2}=\frac{2x}{14}=\frac{x}{7}\left(2\right)\)
\(\frac{x+y}{12}=\frac{x-y}{2}=\frac{\left(x+y\right)-\left(x-y\right)}{12-2}=\frac{2y}{10}=\frac{y}{5}\left(3\right)\)
Từ (1) và (2) => \(\frac{xy}{35}=\frac{x}{7}\Rightarrow\frac{xy}{35}=\frac{xy}{7y}\Rightarrow y=5\)
Từ (1) và (3) => \(\frac{xy}{35}=\frac{y}{5}\Rightarrow\frac{xy}{35}=\frac{xy}{5x}\Rightarrow x=7\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(3x=5y=7z\Rightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{7}}\)
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}\)
Áp dụng t/c
\(\Rightarrow\frac{2x}{\frac{2}{3}}=\frac{y}{\frac{1}{5}}=\frac{3z}{\frac{3}{7}}=\frac{2x-y+3z}{\frac{2}{3}-\frac{1}{5}+\frac{3}{7}}=\frac{188}{\frac{105}{94}}=210\)
\(\frac{x}{\frac{1}{3}}=210\Rightarrow x=70\)
\(\frac{y}{\frac{1}{5}}=210\Rightarrow y=42\)
\(\frac{z}{\frac{1}{7}}=210\Rightarrow z=30\)