Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, Gọi thương phép chia là Q(x) khi đó, ta có:
2x2 + ax +1 = (x-3).Q(x) +4
Với x=3 ta có: 2.32 + 3a +1= 0.Q(x) +4
19+3a = 4
=> 3a= -15
=> a= -5
Giai tương tự với các câu còn lại hoặc có thể dùng phương pháp đồng nhất hệ số

a,Để \(4x^2-6x+a=\left(x-3\right)\left(4x+6\right)+\left(a+18\right)⋮\left(x-3\right)\)
\(\Rightarrow x+18=0\Rightarrow x=-18\)
Các câu dưới tương tự bn tự làm nha!

Giả sử \(2x^2+ax-4\)chia cho x + 4 = \(Q\left(x\right)\)
\(\Rightarrow2x^2+ax-4=\left(x+4\right)Q\left(x\right)\)
Vì đẳng thức trên đúng với mọi x thuộc R
=> Với x = -4
\(\Rightarrow2\left(-4\right)^2+a\left(-4\right)-4=0\)
\(\Rightarrow32-4a-4=0\)
\(\Rightarrow28=4a\Leftrightarrow a=7\)
Các bài khác tương tự thôi
b/ Gọi thương của phép chia \(\left(x^3+ax^2+5x+3\right)\)cho \(\left(x^2+2x+3\right)\)là \(Q_{\left(x\right)}\)
=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)Q_{\left(x\right)}\)
=> Q(x) có bậc 1
=> \(Q_{\left(x\right)}=bx+c\)
=> \(x^3+ax^2+5x+3=\left(x^2+2x+3\right)\left(bx+c\right)\)
=> \(x^3+ax^2+5x+3=bx^3+2bx^2+3bx+cx^2+2cx+3c\)
=> \(x^3+ax^2+5x+3=bx^3+\left(2b+c\right)x^2+\left(3b+2c\right)x+3c\)
Ta có \(\hept{\begin{cases}x^3=bx^3\\3c=3\end{cases}}\)=> \(\hept{\begin{cases}b=1\\c=1\end{cases}}\)
=> \(x^3+ax^2+5x+3=x^3+3x^2+5x+3\)
Đồng nhất hệ số => a = 3
a) Thực hiện phép chia đa thức 5x3+4x2-6x-a cho 5x - 1 ta được số dư là -a - 1
Để 5x3+4x2-6x-a chia hết cho 5x-1 thì -a - 1 = 0
=> a = -1
b) \(\left(x+1\right)^2=x^2+2x+1\)
Thực hiện phép chia đa thức x3 + x2-x+a cho (x+1)2 ta được số dư là
a + 1
Để x3 + x2-x+a chia hết cho (x+1)2 thì a = -1
P/s: Khi làm bài e nhớ thực hiện phép chia chi tiết vào nehs!