Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Để tính diện tích xung quanh của túi quà, ta sử dụng công thức:
Diện tích xung quanh = số cạnh đáy * độ dài cạnh đáy * độ dài trung đoạn
Trong trường hợp này, số cạnh đáy là 4, độ dài cạnh đáy là 12 cm, và độ dài trung đoạn là 8 cm. Thay vào công thức, ta có:
Diện tích xung quanh = 4 * 12 cm * 8 cm = 384 cm\(^2\)
Vậy diện tích xung quanh của túi quà là 384 cm\(^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Diện tích đáy là \(12^2=144\left(cm^2\right)\)
Thể tích túi quà là: \(\dfrac{1}{3}\cdot144\cdot10=48\cdot10=480\left(cm^3\right)\)
b: Diện tích xung quanh túi quà là:
\(S_{xq}=12\cdot4\cdot12=576\left(cm^2\right)\)
Diện tích cần mua là:
\(576+12^2=720\left(cm^2\right)=0,072\left(m^2\right)\)
Số tiền cần bỏ ra là:
\(0,072\cdot200000=14400\left(đồng\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,S_{xp}=4.\dfrac{a+2a}{2}.a=6a^2\)
\(b,\)Vẽ một mặt bên. Ta có:\(AH=\dfrac{AB-A^'B^'}{2}=\dfrac{2a-a}{2}=\dfrac{a}{2}\)
Trong tamn giác vuông A'HA:
\(AA^'=\sqrt{a^2+\left(\dfrac{a}{2}\right)^2}=\sqrt{\dfrac{5a^2}{4}}\)
Từ đó tính tiếp sẽ ra chiều cao hình chóp
Đáp số :Độ dài cạnh bên là :\(\sqrt{\dfrac{5a^2}{4}}\)
Chiều cao chóp cụt :\(\sqrt{\dfrac{3a^2}{4}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Diện tích xung quanh của hình chóp tam giác đều là: \(\frac{{10.3}}{2}.12 = 180\) (\(c{m^2}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là: \(\frac{{72.4}}{2}.77 = 11088\) (\(d{m^2}\))
Diện tích đáy của hình chóp tứ giác đều là: \({72^2}=5184\) (\(d{m^2}\))
Diện tích toàn phần của hình chóp tứ giác đều là: \(11088 + 5184 = 16 272\) (\(d{m^2}\))
Thể tích của hình chóp tứ giác đều là: \(\frac{1}{3}.5184.68,1=117676,8\) (\(d{m^3}\))
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi M là trung điểm của AB:
\(\Rightarrow MA=MB=\dfrac{AB}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Do SM là ⊥ AB nên ΔSAM vuông tại M áp dụng định lý Py-ta-go ta có:
\(SA^2=SM^2+MA^2\)
\(\Rightarrow13^2=SM^2+5^2\)
\(\Rightarrow SM=\sqrt{13^2-5^2}=12\left(cm\right)\)
Nữa chu vi đáy của hình chóp tứ giác đều:
\(p=\dfrac{4\cdot10}{2}=20\left(cm\right)\)
Diện tích xung quanh của chóp tứ giác đều là:
\(S_{xq}=p\cdot d=20\cdot12=240\left(cm^2\right)\)
Ảnh tham khảo:
Gọi x (cm) là đường cao của mặt bên:
Ta có:
x² = 13² - 5² = 144
x = 12 (cm)
Diện tích xung quanh của hình chóp:
4 . 12 . 10 : 2 = 240 (cm²)
ok man
hình đâu ?:>
WHERE?