Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC

1. Hai tam giác BEC và AEF có góc đỉnh E chung và \(\angle EBC=\angle EAF=60^{\circ}\to\Delta BEC\sim\Delta AEF\left(g.g\right).\)
2. Hai tam giác DCF và AEF tương tự câu 1.
3. Từ hai điều trên (hoặc trực tiếp) suy ra \(\Delta BEC\sim\Delta DCF\to=\frac{BE}{DC}=\frac{BC}{DF}\to BE\cdot DF=BC\cdot DC=DB^2.\)
4. Từ 3. suy ra \(\frac{BE}{BD}=\frac{BD}{DF},\angle EBD=BDF=120^{\circ}\to\Delta BDE\sim\Delta DFB\left(c.g.c\right)\)

A B C D M N E
a, xét tứ giác AMDN có :
góc BAC = góc DMA = góc AND = 90 (gt)
=> AMDN là hình chữ nhật (dấu hiệu)
b, AMDN là hình chữ nhật (câu a)
=> AN // DM hay AN // ME (1)
AMDN là hình chữ nhật => AN = MD (tc)
MD = ME do E đối xứng cới D qua M (gt)
=> AN = ME và (1)
=> AEMN là hình bình hành (dấu hiệu)
=> AN // ME (đn)
c, AMDN là hình chữ nhật (câu a)
để AMDN là hình vuông
<=> DN = DM (dh) (2)
có D là trung điểm của BC (gt)
DN // AB do AMDN là hình chữ nhật
=> DN là đường trung bình của tam giác ABC
=> DN = AB/2 (tc)
tương tự có DM = AC/2 và (2)
<=> AB/2 = AC/2
<=> AB = AC
tam giác ABC vuông tại A gt)
<=> tam giác ABC vuông cân tại A
vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông
+ vì AMDN là hình vuông
=> MN _|_ AD (tc)
=> S AMDN = NM.AD : 2 (Đl)
tam giác ABC vuông tại A có AD _|_ BC
=> S ABC = AD.BC : 2 (đl) (3)
BC = 2NM do NM là đường trung bình của tam giác ABC và (3)
=> S ABC = AD.2MN : 2
=> S ABC = 2S AMDN

a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*

Câu 1 : https://hoidap247.com/cau-hoi/70816
Câu 2 :https://h7.net/cau-hoi-cho-hinh-binh-hanh-abcd-goi-h-va-k-lan-luot-la-hinh-chieu-cua-a-va-c-tren-duong-cheo-bd--qid124026.html
Câu 3 : https://lazi.vn/edu/exercise/843399/cho-tam-giac-abc-vuong-tai-a-ab-ac-duong-trung-tuyen-ai-qua-i-ve-im-vuong-goc-voi-ab
Câu 4 : https://h.vn/cau-hoi/cho-tam-giac-abc-vuong-tai-a-duong-cao-ad-goi-mn-lan-luot-la-diem-doi-xung-voi-d-qua-ab-va-ac-dm-cat-ab-tai-e-dn-cat-ac-tai-fa-tu-giac-aedf-la.194171467353
Câu 5 : https://lazi.vn/edu/exercise/cho-tam-giac-abc-vuong-tai-a-trung-tuyen-am-d-la-trung-diem-cua-ab-goi-e-la-diem-doi-xung-voi-m
Bạn copy link rồi tra nha , trên đó có đáp án r á
1 số bạn làm sau không copy mình nha :33
k mình nha <3 - Emma Miss ~
Sửa đề: E đối xứng D qua điểm O
a: Xét tứ giác ADCE có
O là trung điểm chung của AC và DE
=>ADCE là hình bình hành
Hình bình hành ADCE có \(\widehat{ADC}=90^0\)
nên ADCE là hình chữ nhật
b: Ta có: ADCE là hình chữ nhật
=>AE//CD và AE=CD
Ta có: ΔABC cân tại A
mà AD là đường cao
nên D là trung điểm của BC
=>DB=DC
Ta có: AE//DC
D\(\in\)BC
Do đó: AE//DB
Ta có: AE=DC
DC=DB
Do đó: AE=DB
Xét tứ giác AEDB có
AE//DB
AE=DB
Do đó: AEDB là hình bình hành
=>AD cắt EB tại trung điểm của mỗi đường
mà I là trung điểm của AD
nên I là trung điểm của EB
Chào em, em tự đặt câu hỏi rồi tự trả lời nhé.
Còn tái phạm là sẽ xóa bài + trừ GP để cảnh cáo đó.
Em có thể hỏi bài thoải mái, nhưng nếu hỏi xong tự mình trả lời sẽ là gian lận buff GP.