Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x}\)+\(\frac{1}{y}\)=\(\frac{1}{24}\)<=>\(\frac{24y}{24xy}\)+\(\frac{24x}{24xy}\)=\(\frac{xy}{24xy}\)
<=> 24y +24x=xy<=> (24y-xy) -(576-24x)+576=0
<=> y(24-x) -24(24-x)=-576
<=> (24-x)(y-24)=-576=-576.1=1.(-576)=(-24).24=24.(-24)=12.(-48)=48.(-12)=....
và lần lượt cho 24-x và y-24 = các kết quả kia và chỉ lấy những giá trị là số tự nhiên
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{3}{x}+\dfrac{6}{y}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{6}{2x}+\dfrac{6}{y}=\dfrac{1}{4}\)
\(\Leftrightarrow6\left(\dfrac{1}{2x}+\dfrac{1}{y}\right)=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2x}+\dfrac{1}{y}=\dfrac{1}{24}^{\left(1\right)}\)
Lại có: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{16}^{\left(2\right)}\)
Lấy (2) trừ (1) ta có:
\(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{2x}-\dfrac{1}{y}=\dfrac{1}{16}-\dfrac{1}{24}\)
\(\Leftrightarrow\dfrac{2-1}{2x}=\dfrac{1}{48}\)
\(\Leftrightarrow\dfrac{1}{2x}=\dfrac{1}{48}\)
=> 2x = 48
<=> x = 24
Thay x = 24 vào (2) ta có:
\(\dfrac{1}{24}+\dfrac{1}{y}=\dfrac{1}{16}\)
\(\Leftrightarrow\dfrac{1}{y}=\dfrac{1}{48}\)
=> y = 48
Vậy ...
Ta có: \(\dfrac{3}{x}\) + \(\dfrac{6}{y}\) = \(\dfrac{1}{4}\)
<=> 3(\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) ) = \(\dfrac{1}{4}\)
<=> \(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) = \(\dfrac{1}{12}\) (1)
Mặt khác: \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) = \(\dfrac{1}{16}\) (2)
Trừ (2) cho (1) vế theo vế ta được:
\(\dfrac{1}{x}\) + \(\dfrac{2}{y}\) - \(\dfrac{1}{x}\) - \(\dfrac{1}{y}\) = \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\)
<=> \(\dfrac{1}{y}\) = \(\dfrac{1}{48}\) <=> y = 48
Thay y =48 vào (2) ta có: \(\dfrac{1}{x}\) + \(\dfrac{1}{48}\) = \(\dfrac{1}{16}\)
<=> \(\dfrac{1}{x}\) = \(\dfrac{1}{24}\) <=> x = 24
Vậy x =24 ; y =48
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 8: Tìm x?
\(\left(x+5\right)^2-\left(x+2\right)\left(x-3\right)=-2\\ \\ < =>x^2+10x+25-x^2+3x-2x+6=-2\\ < =>x^2-x^2+10x+3x-2x=-2-25-6\\ < =>11x=-33\\ =>x=-\frac{33}{11}=-3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có :
\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+....+\frac{1}{\left(x+5\right)\left(x+6\right)}\)
\(=\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+....+\frac{1}{x+5}-\frac{1}{x+6}\)
\(=\frac{1}{x}-\frac{1}{x+6}\)
\(=\frac{6}{x\left(x+6\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có 20 học sinh nữ đang xếp thành một hàng thì có 4 học sinh nam chen vào hàng. Mỗi một học sinh nam đếm số bạn nữ đứng trước mình thì các con số thu được là 17, 14, 5 và 2 tương ứng. Mỗi một học sinh nữ cũng đếm số học sinh nam đứng trước mình. Hỏi tổng số các số mà các bạn nữ đếm được là bao nhiêu?
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
\(\frac{x+1}{2002}+\frac{x+2}{2001}+\frac{x+3}{2000}=\frac{x+4}{1999}+\frac{x+5}{1998}+\frac{x+6}{1997}\)
\(\Rightarrow\left(1+\frac{x+1}{2002}\right)+\left(1+\frac{x+2}{2001}\right)+\left(1+\frac{x+3}{2000}\right)=\left(1+\frac{x+4}{1999}\right)+\left(1+\frac{x+5}{1998}\right)+\left(1+\frac{x+6}{1997}\right)\)
\(\Rightarrow\frac{x+2003}{2002}+\frac{x+2003}{2001}+\frac{x+2003}{2000}=\frac{x+2003}{1999}+\frac{x+2003}{1998}+\frac{x+2003}{1997}\)
\(\Rightarrow\frac{x+2003}{2002}+\frac{x+2003}{2001}+\frac{x+2003}{2000}-\frac{x+2003}{1999}-\frac{x+2003}{1998}-\frac{x+2003}{1997}=0\)
\(\Rightarrow\left(x+2003\right)\left(\frac{1}{2002}+\frac{1}{2001}+\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\right)=0\)
Mà \(\frac{1}{2002}+\frac{1}{2001}+\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}-\frac{1}{1997}\ne0\)
\(\Rightarrow x+2003=0\)
\(\Rightarrow x=-2003\)
Vậy x = -2003
Câu 6:
Giải:
Áp dụng định lí Py-ta-go vào \(\Delta ABC\left(\widehat{B}=90^o\right)\) có:
\(\Rightarrow AB^2+BC^2=AC^2\)
\(\Rightarrow6^2+BC^2=10^2\)
\(\Rightarrow BC^2=64\)
\(\Rightarrow BC=8\)
\(\Rightarrow S_{ABCD}=8.6=48\left(cm^2\right)\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
? 10cm H B A C
ta có: \(S_{ABC}=\dfrac{1}{2}.AH.BC\)
hay \(45=\dfrac{1}{2}.10.BC\)
\(\Rightarrow BC=\dfrac{45}{5}=9\)
Vậy BC = 9(cm)
Câu 1:
Độ dài BC bằng:
\(S_{ABC}=\frac{AH.BC}{2}\\ =>BC=\frac{S_{ABC}.2}{AH}=\frac{45.2}{10}=9\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
Cạnh BC bằng:
\(S_{ABC}=\frac{AH.BC}{2}\\ =>BC=\frac{S_{ABC}.2}{AH}=\frac{45.2}{10}=9\left(cm\right)\)
Câu 6:
A B C D
Giải:
Xét \(\Delta ABC\left(\widehat{B}=90^o\right)\) có:
\(AB^2+BC^2=AC^2\)
\(\Rightarrow\sqrt{2^2}+\sqrt{2^2}=AC^2\)
\(\Rightarrow AC^2=4\)
\(\Rightarrow AC=2\)
Vậy đường chéo là 2 cm
câu 4
\(\dfrac{1}{x\left(x+1\right)}+\dfrac{1}{\left(x+1\right)\left(x+2\right)}+...+\dfrac{1}{\left(x+99\right)\left(x+100\right)}=\dfrac{k}{x\left(x+100\right)}\) =>\(\dfrac{1}{x}-\dfrac{1}{x+1}+\dfrac{1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-...+\dfrac{1}{x+99}-\dfrac{1}{x+100}=\dfrac{k}{x\left(x+100\right)}\) =>\(\dfrac{1}{x}-\dfrac{1}{x+100}=\dfrac{k}{x\left(x+100\right)}\)
=>\(\dfrac{x+100-x}{x\left(x+100\right)}=\dfrac{k}{x\left(x+100\right)}\)
=>x+100-x=k
=>k=100
\(\Delta AMC\) và \(\Delta ABC\) có chung chiều cao hạ từ C và đáy AM=\(\dfrac{2}{3}AB\) nên\(S_{AMC}=\dfrac{2}{3}S_{ABC}=\dfrac{2}{3}.54=36\left(cm^2\right)\)
\(\Delta AMC\) và \(\Delta AMN\) có chung chiều cao hạ từ M và đáy \(AN=\dfrac{1}{3}AC=>S_{AMN}=\dfrac{1}{3}S_{AMC}=\dfrac{1}{3}.36=12\left(cm^2\right)\) Vậy diện tích tam giác AMN=12(cm2) A B C M N