Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3-6ab^2=0\)
\(\Leftrightarrow0=0\) ( đpcm) .
b) \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2a^3-6ab^2=0\)
\(\Leftrightarrow0=0\) ( luôn đúng )
Vậy đẳng thức được chứng minh.
Làm cách khác với "thị nở" :v.
a) \(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)
\(=\left[\left(a+b\right)+\left(a-b\right)\right]\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]=2a\left(a^2+3b^2\right)\)
\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2-a^2+b^2+a^2-2ab+b^2\right)=2a\left(a^2+3b^2\right)\)
\(=2a\left(a^2+3b^2\right)=2a\left(a^2+3b^2\right)\)
b) \(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)
\(=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]=2b\left(b^2+3a^2\right)\)
\(=\left(a+b-a+b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)=2b\left(b^1+3a^2\right)\)\(=2b^2\left(b^2+3a^2\right)=2b^2\left(b^2+3a^2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.\(\left(a+b\right)^3+\left(a-b\right)^3=2a\left(a^2+3b^2\right)\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3+a^3-3a^2b+3ab^2-b^3-2a^3-6ab^2=o\)
\(\Leftrightarrow0=0\)(đpcm)
b.\(\left(a+b\right)^3-\left(a-b\right)^3=2b\left(b^2+3a^2\right)\)
\(\Leftrightarrow a^3+3a^2b+3ab^2+b^3-a^3+3a^2b-3ab^2+b^3-2b^3-6a^2b=o\)
\(\Leftrightarrow0=0\)luôn đúng
Vậy đẳng thức được chứng minh
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn có thể phân tích từng vế trong đẳng thức thì sẽ ra vế còn lại hoặc có thể phân tích cả hai vế.
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình như đề sai , giả sử a = b = c = 0
=> vế trái bằng 0 , vé phải bằng 24
\(\left(3a+b-c\right)^3+\left(3b+c-a\right)^3+\left(3c+a-b\right)^3+24\)
\(=24+27a^3+27b^3+27c^3+3\left(\left(3a+b\right)\left(3a-c\right)\left(b-c\right)+\left(3b+c\right)\left(3b-a\right)\left(c-a\right)+\left(3c+a\right)\left(3c-b\right)\left(a-b\right)\right)\)\(\left(3a+3b+3c\right)^3=27a^3+27b^3+27c^3+81\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow8+A=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Trả lời:
a, ( a + b )3 + ( a - b )3
= a3 + 3a2b + 3ab2 + b3 + a3 - 3a2b + 3ab2 - b3
= 2a3 + 6ab2
= 2a ( a2 + 3b2 ) (đpcm)
b, Sửa đề: ( a + b )3 - ( a - b )3
= a3 + 3a2b + 3ab2 + b3 - ( a3 - 3a2b + 3ab2 - b3 )
= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3
= 6a2b + 2b3
= 2b ( b2 + 2a2 )
Trả lời:
( câu b vừa nãy tớ làm nhầm )
b, ( a + b )3 - ( a - b )3
= a3 + 3a2b + 3ab2 + b3 - ( a3 - 3a2b + 3ab2 - b3 )
= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3
= 6a2b + 2b3
= 2b ( b2 + 3a2 ) (đpcm)